Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T17:06:32.289Z Has data issue: false hasContentIssue false

MITOCHONDRIAL DNA VARIATION AND IDENTIFICATION OF BARK WEEVILS IN THE PISSODES STROBI SPECIES GROUP IN WESTERN CANADA (COLEOPTERA: CURCULIONIDAE)

Published online by Cambridge University Press:  31 May 2012

David W. Langor*
Affiliation:
Canadian Forest Service, Northern Forestry Centre, 5320-122 Street, Edmonton, Alberta, Canada T6H 3S5
Felix A.H. Sperling
Affiliation:
Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
*
1 Author to whom correspondence should be addressed.

Abstract

Morphological, allozyme, and chromosomal characters and ecological traits have limited value for discriminating among four closely related Pissodes spp. known from western Canada. We amplified a 1585-bp segment of mitochondrial DNA (mtDNA), including half of the cytochrome oxidase I (COI) and all of the tRNA leucine and COII genes, using the polymerase chain reaction, and studied mtDNA variation within and among all four species of Pissodes with restriction enzymes. Twenty-four haplotypes were found among the 121 maternal lineages surveyed. Haplotype distributions suggest intermediate levels of gene flow for each species. Interspecific estimated sequence divergences ranged from 0 to 28.7%. Phylogenetic relationships among species were reconstructed using P. affinis Randall as an outgroup. Pissodes terminalis Hopping and P. nemorensis Germar were the most closely related species, and this clade was most closely related to P. strobi (Peck); P. schwarzi Hopkins branched off below these three. Restriction site variation is sufficient to discriminate unambiguously among most species. However, P. terminalis and P. nemorensis haplotypes were very similar, which may complicate discrimination between these two species, using mtDNA characters, where their ranges putatively overlap in Manitoba. A diagnostic protocol using three restriction enzymes, Bcl I, Dra I, and Hinf I, is recommended.

Résumé

Les allozymes, les caractères morphologiques et chromosomiques ou encore les propriétés écologiques ne permettent pas de distinguer les quatre espèces très apparentées de Pissodes spp. de l’ouest du Canada. Nous avons amplifié un segment de 1585 paires de base d’ADN mitochondrial (ADNmt), incluant la moitié des gènes codant pour la cytochrome oxydase I (COI) de même que tous les gènes codant pour l’ARNt-leucine et pour la cytochrome oxydase II, au moyen de la réaction en chaîne par la polymerase, et avons par la suite étudié la variation de l’ADNmt au sein de chacune des espèces et entre les quatre espèces de Pissodes au moyen d’enzymes de restriction. Vingt-quatre haplotypes ont été trouvés parmi les 121 lignées maternelles étudiées. La répartition des haplotypes a permis de constater qu’il se fait un transfert de gènes d’intensité moyenne chez chacune des espèces. Les divergences interspécifiques entre les séquences ont été évaluées entre 0 et 28,7%. Les relations phylogénétiques entre les espèces ont été reconstituées en utilisant P. affinis Randall comme groupe externe. Pissodes terminalis Hopping et P. nemorensis Germar sont les deux espèces les plus apparentées et ce clade s’apparente surtout à P. strobi (Peck); P. schwarzi Hopkins est apparu avant les trois autres espèces. La variation des sites de restriction permet de faire une discrimination non équivoque entre la plupart des espèces. Cependant, les haplotypes de P. terminalis et de P. nemorensis sont très semblables, ce qui peut créer de la confusion entre les deux espèces lorsqu’elles sont identifiées par l’ADNmt aux endroits où elles semblent cohabiter au Manitoba. Un protocole diagnostique basé sur trois enzymes de restriction, Bel I, Dra I et Hinf I est proposé.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, R.I., and Ying, C.C.. 1990. Levels of Sitka spruce weevil, Pissodes strobi (Peck), damage among Sitka spruce provenances and families near Sayward, British Columbia. The Canadian Entomologist 122: 607615.CrossRefGoogle Scholar
Atkinson, T.H., Foltz, J.L., and Connor, M.D.. 1988. Bionomics of Pissodes nemorensis Germar (Coleoptera: Curculionidae) in northern Florida. Annals of the Entomological Society of America 81: 255261.Google Scholar
Avise, J.C. 1991. Ten unorthodox perspectives on evolution prompted by comparative population genetic findings on mitochondrial DNA. Annual Review of Genetics 25: 4569.CrossRefGoogle ScholarPubMed
Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A., and Saunders, N.C.. 1987. Intraspecific phylogeography: The mitochondrial DNA bridge between genetics and systematics. Annual Review of Ecology and Systematics 18: 489522.CrossRefGoogle Scholar
Beckenbach, A.T., Wei, Y.W., and Liu, H.. 1993. Relationships in the Drosophila obscura species group, inferred from mitochondrial cytochrome oxidase II sequences. Molecular Biology and Evolution 10: 619634.Google ScholarPubMed
Belyea, R.M., and Sullivan, C.R.. 1956. The white pine weevil: A review of current knowledge. Forestry Chronicle 32: 5867.CrossRefGoogle Scholar
Boyce, T.M., Zwick, M.E., and Aquadro, C.F.. 1989. Mitochondrial DNA in the bark weevils: Size, structure, and heteroplasmy. Genetics 123: 825836.CrossRefGoogle ScholarPubMed
Boyce, T.M., Zwick, M.E., and Aquadro, C.F.. 1994. Mitochondrial DNA in the bark weevils: Phylogeny and evolution in the P. strobi species group. Molecular Biology and Evolution 11: 183194.Google Scholar
Brower, A.V.Z., and Boyce, T.M.. 1991. Mitochondrial DNA variation in monarch butterflies. Evolution 45: 12811286.CrossRefGoogle ScholarPubMed
Cano, R. J., Poinar, H.N., Pieniazek, N.J., Acra, A., and Poinar, G.O. Jr., 1993. Amplification and sequencing of DNA from a 120–135-million-year-old weevil. Nature 363: 536538.Google Scholar
Drouin, J.A., Sullivan, C.R., and Smith, S.G.. 1963. Occurrence of Pissodes terminalis Hopp. (Coleoptera: Curculionidae) in Canada: Life history, behaviour, and cytogenetic identification. The Canadian Entomologist 95: 7076.CrossRefGoogle Scholar
Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783791.Google Scholar
Fontaine, M.S., Foltz, J.L., and Nation, J.L.. 1983. Reproductive anatomy and seasonal development of the deodar weevil, Pissodes nemorensis (Coleoptera: Curculionidae), in north Florida. Environmental Entomology 12: 687691.CrossRefGoogle Scholar
Gemminger, M., and von Harold, E.. 1871. Catalogus coleopterorum hucusque synonymicus et systematicus, Volume 8. pp. 24312432.Google Scholar
Godwin, P.A., and Odell, T.M.. 1967. Experimental hybridization of Pissodes strobi and P. approximatus (Coleoptera: Curculionidae). Annals of the Entomological Society of America 60: 5558.Google Scholar
Harrison, R.G. 1989. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends in Ecology and Evolution 4: 611.Google Scholar
Harrison, R.G. 1991. Molecular changes at speciation. Annual Review of Ecology and Systematics 22: 281308.Google Scholar
Hopkins, A.D. 1911. Contributions toward a monograph of the bark-weevils of the genus Pissodes. United States Department of Agriculture, Bureau of Entomology, Technical Series 20(1): 168.Google Scholar
Langor, D.W., Drouin, J.A., and Wong, H.R.. 1992. The Lodgepole Terminal Weevil in the Prairie Provinces. Forestry Canada, Northern Forestry Centre, Edmonton, Alberta, Forest Management Note 55: 8 pp.Google Scholar
Langor, D.W., and Sperling, F.A.H.. 1994. Diagnostics of the Pissodes strobi species group in western Canada, using mitochondrial DNA. pp. 174–183 in Alfaro, R.I., Kiss, G., and Fraser, R.G. (Eds.), The White Pine Weevil: Biology, Damage, and Management. Proceedings of a Meeting, 19–21 January 1994, Richmond, B.C. Canadian Forest Service, Pacific Forestry Centre, Victoria, BC, FRDA Report 226: 311 pp.Google Scholar
Manna, G.K., and Smith, S.G.. 1959. Chromosomal polymorphism and inter-relationships among bark weevils of the genus Pissodes Germar. Nucleus 2: 179208.Google Scholar
Martin, A., and Simon, C.. 1990. Differing levels of among-population divergence in the mitochondrial DNA of periodical cicadas related to historical biogeography. Evolution 44: 10661080.Google Scholar
Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, NY. 512 pp.Google Scholar
Nei, M., and Tajima, F.. 1983. Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105: 207217.CrossRefGoogle ScholarPubMed
O'Brien, C.W. 1989. Revision of the weevil genus Pissodes in Mexico with notes on Neotropical Pissodini (Coleoptera: Curculionidae). Transactions of the American Entomological Society 115: 415432.Google Scholar
O'Brien, L.F. 1989. A Catalog of the Coleoptera of America North of Mexico: Family Curculionidae, Subfamily Pissodinae. United States Department of Agriculture Handbook 529–143d: 8 pp.Google Scholar
Phillips, T.W. 1984. Ecology and Systematics of Pissodes Sibling Species (Coleoptera: Curculionidae). Ph.D thesis, University of New York, Syracuse, NY. 204 pp.Google Scholar
Phillips, T.W., and Lanier, G.N.. 1983. Biosystematics of Pissodes Germar (Coleoptera: Curculionidae): Feeding preference and breeding site specificity of P. strobi and P. approximatus. The Canadian Entomologist 115: 16271636.CrossRefGoogle Scholar
Phillips, T.W., Teale, S.A., and Lanier, G.N.. 1987. Biosystematics of Pissodes Germar (Coleoptera: Curculionidae): Seasonality, morphology, and synonymy of P. approximatus Hopkins and P. nemorensis Germar. The Canadian Entomologist 119: 465480.Google Scholar
Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, A.J., Higuchi, R., Horn, G.T., Mullis, K.B., and Ehrlich, H.A.. 1988. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239: 487491.CrossRefGoogle ScholarPubMed
SAS Institute. 1985. SAS User's Guide: Statistics, Version 5. SAS Institute, Cary, NC. 956 pp.Google Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P.. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87: 651701.Google Scholar
Smith, S.G., and Sugden, B.A.. 1969. Host trees and breeding sites of native North American Pissodes bark weevils, with a note on synonymy. Annals of the Entomological Society of America 62: 146148.Google Scholar
Smith, S.G., and Takenouchi, Y.. 1962. Unique incompatibility system in a hybrid species. Science 138: 3637.Google Scholar
Smith, S.G., and Takenouchi, Y.. 1969. Chromosomal polymorphism in Pissodes weevils: Further on incompatibility in P. terminalis. Canadian Journal of Genetics and Cytology 11: 761782.Google Scholar
Smith, S.G., and Virkki, N.. 1978. Animal Cytogenetics, vol. 3. Gebrüder Borntraeger, Berlin. 366 pp.Google Scholar
Sneath, P.H.A., and Sokal, R.R.. 1973. Numerical Taxonomy. W.H. Freeman and Co., San Francisco, CA. 573 pp.Google Scholar
Sperling, F.A.H. 1993 a. Mitochondrial DNA variation and Haldane's rule in the Papilio glaucus and P. troilus species groups. Heredity 71: 227233.Google Scholar
Sperling, F.A.H. 1993 b. Mitochondrial DNA phylogeny of the Papilio machaon species group (Lepidoptera: Papilionidae). pp. 233–242 in Ball, G.E., and Danks, H.V. (Eds.), Systematics and Evolution: Diversity, Distribution, Adaptation, and Application. Memoirs of the Entomological Society of Canada 165: 272 pp.Google Scholar
Sperling, F.A.H., Anderson, G.S., and Hickey, D.A.. 1994. A DNA-based approach to the identification of insect species used for postmortem interval estimation. Journal of Forensic Sciences 39: 418427.Google Scholar
Sperling, F.A.H., and Harrison, R.G.. 1994. Mitochondrial DNA variation within and between species of the Papilio machaon group of swallowtail butterflies. Evolution. 48: 408422.Google Scholar
Sperling, F.A.H., and Hickey, D.A.. 1994. Mitochondrial DNA sequence variation in the spruce budworm species complex (Choristoneura: Lepidoptera). Molecular Biology and Evolution 11: 656665.Google ScholarPubMed
Sperling, F.A.H., and Hickey, D.A.. 1995. Amplified mitochondrial DNA as a diagnostic marker for species of conifer-feeding Choristoneura (Lepidoptera: Tortricidae). The Canadian Entomologist 127: 277288.CrossRefGoogle Scholar
Swofford, D. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1. Illinois Natural History Survey, Champaign, IL. 121 pp.Google Scholar
Vogler, A.P., DeSalle, R., Assmann, T., Knisley, C.B., and Schultz, T.D.. 1993. Molecular population genetics of the endangered tiger beetle Cicindela dorsalis (Coleoptera: Cicindelidae). Annals of the Entomological Society of America 86: 142152.CrossRefGoogle Scholar
Willis, L.G., Winston, M.L., and Honda, B.M.. 1992. Phylogenetic relationships in the honeybee (genus Apis) as determined by the sequence of the cytochrome oxidase II region of mitochondrial DNA. Molecular Phylogenetic Evolution 1: 169178.CrossRefGoogle ScholarPubMed