Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T10:45:44.909Z Has data issue: false hasContentIssue false

MICROPROCESSOR-CONTROLLED MINI-ENVIRONMENTAL CHAMBERS CAPABLE OF SUBFREEZING TEMPERATURES IN CONSTANT OR TIME-VARYING TEMPERATURE REGIMES

Published online by Cambridge University Press:  31 May 2012

D.R. Gray
Affiliation:
Department of Entomology, Price Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA 24061-0319
F.W. Ravlin
Affiliation:
Department of Entomology, Price Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA 24061-0319
J.A. Logan
Affiliation:
Department of Entomology, Price Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA 24061-0319

Abstract

A set of six microprocessor-controlled mini-environmental chambers (0.04 m3 each) was designed, built, and tested. Chambers are capable of subfreezing temperatures (less than −10 °C) and can operate under constant or time-varying temperature regimes. Chambers are cooled by circulating ethyl alcohol from a reservoir chilled by an immersion cooler. Heat is provided by 17-W cartridge heaters. Temperatures are independently controlled by a single IBM 8088 computer instructing a data acquisition and control system. A single photoperiod is maintained by a commercial timer activating two miniature light bulbs in each chamber. Chamber temperatures were within 0.5 or 0.75 °C of the set temperature 65 or 94% of the time, respectively, during a 39-d test period. Minimum temperature capabilities were estimated for a variety of chamber configurations by an examination of the thermodynamic characteristics of the system.

Résumé

Un montage de six mini-enceintes (0,04 m3) réglées par des micro-processeurs a été conçu, construit et éprouvé. Ces enceintes peuvent atteindre des températures inférieures au point de congélation (<−10 °C) et peuvent fonctionner à des régimes de température ambiante constants ou variables. Les enceintes sont refroidies par circulation d’alcool éthylique à partir d’un réservoir muni d’un appareil de refroidissement submersible. La chaleur est assurée par des cartouches chauffantes de 17 W. Les températures sont réglées indépendamment par un seul ordinateur IBM 8088 envoyant des directives à un système d’acquisition et de contrôle de données. Dans chaque enceinte, la même photopériode est maintenue au moyen d’une minuterie commerciale actionnant deux ampoules électriques miniatures. Au cours d’un test d’une durée de 39 jours, les températures dans les enceintes se sont maintenues à 0,5 et 0,75 °C de la température de réglage dans 65 et 94% du temps respectivement. La température minimale potentielle des enceintes a été estimée dans un assortiment de montages par examen des caractéristiques thermodynamiques du système.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.C. 1976. A modified sine wave method for calculating degree days. Environmental Entomology 5(3): 388396.CrossRefGoogle Scholar
ASHRAE. 1985. Fundamental Handbook. American Society of Heating, Refrigeration and Air-conditioning Engineers, Atlanta, GA.Google Scholar
Kreith, F. 1973. Principles of Heat Transfer. Dun-donnelley Press, New York.Google Scholar
Liu, S.-S., Zhang, G.-M., and Zhu, J.. 1995. Influence of temperature variations on rate of development in insects: analysis of case studies from entomological literature. Annals of the Entomological Society of America 88(2): 107119.Google Scholar
Nicholls, C.F., and Grills, E.E.. 1968. An improved incubator for insects for operation above room temperature and relative humidity. Journal of Economic Entomology 61(5): 11421145.Google Scholar
Roltsch, W.J., Mayse, M.A., and Clausen, K.. 1990. Temperature-dependent development under constant and fluctuating temperatures: comparison of linear versus nonlinear methods for modeling development of western grapeleaf skeletonizer (Lepidoptera: Zygaenidae). Environmental Entomology 19(6): 16891697.Google Scholar
Tanigoshi, L.K., Hoyt, S.C., Browne, R.W., and Logan, J.A.. 1975. Influence of temperature on population increase of Tetranychus mcdaniela (Acarina: Tetranychidae). Annals of the Entomological Society of America 68: 972978.Google Scholar
Taylor, P.S., and Shields, E.J.. 1990. A microprocessor-controlled system of environmental chambers suitable for the study of thermoperiodic effects. Environmental Entomology 19(4): 866873.CrossRefGoogle Scholar
Walker, T.J., Gaffney, J.J., Kidder, A.W., and Ziffer, A.B.. 1993. Florida Reach-ins: environmental chambers for entomological research. American Entomologist 39(3): 177182.CrossRefGoogle Scholar
Wilson, K.G., and Stinner, R.E.. 1981. Inexpensive, multiple-unit environmental chambers with temperature and humidity control. Annals of the Entomological Society of America 74: 560562.Google Scholar
Worner, S.P. 1992. Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect. Environmental Entomology 21(4): 689699.Google Scholar
Yeargan, K.V. 1983. Effects of temperature on developmental rate of Trissolucus euschisti (Hymenoptera: Scelioidae), a parasite of stink bug eggs. Annals of the Entomological Society of America 76: 757760.Google Scholar
Zar, J.H. 1984. Biostatistical Analysis. 2nd ed. Prentice-Hall, Inc., Englewood Cliffs, NJ.Google Scholar