Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T11:50:38.907Z Has data issue: false hasContentIssue false

MESOTHORACIC SKELETOMUSCULATURE AND MECHANICS OF FLIGHT AND JUMPING IN EUPELMINAE (HYMENOPTERA, CHALCIDOIDEA: EUPELMIDAE)1

Published online by Cambridge University Press:  31 May 2012

Gary A.P. Gibson
Affiliation:
Biosystematics Research Institute, Agriculture Canada, Ottawa, Ontario, Canada K1A 0C6

Abstract

Mesothoracic skeletomusculature of male and female Eupelminae is described and compared with that of other Eupelmidae, Chalcidoidea, and Hymenoptera. Various external mesopleural features and structural dimorphism between the sexes are explained by differences in muscle form and placement. A set of terms for mesothoracic structure is proposed that is equally applicable to male and female eupelmines and to other chalcidoids. Mechanics of flight and jumping in male eupelmines, and of jumping in females, is also described. The flight mechanism of males is similar to that previously described in other hymenopterans and is structurally independent of the jumping mechanism. Contraction of large mesotergal-mesotrochanteral muscles, originating from the axillae and axillar phragmata, act directly to retract the mesotrochanters into the mesocoxae for jumping. Females have coadapted the flight and jumping mechanisms into a single mechanism to improve jumping greatly. The mesotergal-mesotrochanteral muscles are reduced to slender, tendon-like muscles originating from the anteroventral angle of each lateral axillar surface. Jumping in females results from contraction of large mesopleural-mesotergal muscles that insert into anterolateral processes of the mesoscutum by pads of resilin. The pads are stretched during contraction of the mesopleural-mesotergal muscles and the potential energy thus stored is subsequently released to flex the mesonotum along the transscutal articulation. The first and second axillary sclerites are modified to function as a hinge to control mesonotal flexing for jumping. Flexing the mesonotum rotates the lateral axillar surfaces anteriorly and dorsally, thereby pulling up on the mesotergal-mesotrochanteral muscles and changing a horizontally directed force into a vertical force that is used to retract the mesotrochanters for jumping. A mesothoracic lock mechanism to prevent initial mesonotal flexing is proposed, but is not documented. “Contortion” of female eupelmines is described, and is a consequence of the increased degree of mesonotal flexing required for their jumping mechanism. The modified mesocoxal articulation of females is hypothesized to function in rotating the middle legs cephalad to protect the head and antennae during landing. It is questioned whether female eupelmines can fly, and the adaptive significance of enhancement of jumping at the expense of flight in females, and of sexual dimorphism in the subfamily, is discussed.

Résumé

On décrit la musculature squelettique mésothoracique des Eupelminae mâles et femelles et on la compare à celle d’autres eupelmidés, des chalcidoïdés et des hyménoptères. On explique divers traits mésopleuraux externes et le dimorphisme structural entre les deux sexes par des différences touchant la forme et la disposition des muscles. On propose une série de termes relatifs à la structure mésothoracique pouvant s’appliquer également aux Eupelminae mâles et femelles ainsi qu’à d’autres chalcidoïdés. La mécanique du vol et du saut chez les Eupelminae mâles et la mécanique du saut chez les femelles sont aussi décrites. Le mécanisme du vol chez les mâles est analogue à celui qui a été décrit antérieurement chez d’autres hyménoptères et il est indépendant, au point de vue structural, du mécanisme du saut. La contraction des gros muscles mésotergaux-mésotrochantériens, qui naissent des axillaires et des phragmes axillaires, rétractent directement les mésotrochanters dans la hanche mésothoracique lors du saut. Les femelles ont adapté les mécanismes du vol et du saut pour n’en faire qu’un seul, qui améliore de beaucoup le saut. Les muscles mésotergaux-mésotrochantériens sont réduits à des muscles élancés, tendiniformes, qui naissent de l’angle antéroventral de chaque surface axillaire latérale. Les femelles sautent en contractant les gros muscles mésopleuraux-mésotergaux qui s’insèrent dans les prolongements antérolatéraux du mésoscutum grâce à des coussinets de résiline. Ces coussinets sont étirés pendant la contraction des muscles mésopleuraux-mésotergaux et l’énergie potentielle ainsi stockée est ensuite libérée pour fléchir le mésonotum le long de l’articulation transcutale. Les premier et deuxième sclérites axillaires sont modifiés de façon à servir de charnière pour commander la flexion mésonotale lors du saut. La flexion du mésonotum fait pivoter les surfaces axillaires latérales antérieurement et dorsalement, ce qui exerce une traction sur les muscles mésotergaux-mésotrochantériens et transforme la force horizontale en une force verticale. Cette force verticale est utilisée pour rétracter les mésotrochanters lors du saut. On propose un mécanisme de blocage du mésothorax qui empêcherait la flexion mésonotale initiale, sans en donner les détails. La “contorsion” des Eupelminae femelles est décrite. Elle résulte du degré accru de flexion mésonotale nécessaire pour le saut. On avance l’hypothèse selon laquelle, chez les femelles, l’articulation mésocoxale modifiée ferait pivoter la partie antérieure du corps portant les pattes médianes pour protéger la tête et les antennes au moment de l’aterrissage. On s’interroge sur la capacité de voler des Eupelminae femelles et l’on discute de la signification, du point de vue de l’adaptation, de l’amélioration du saut au dépens du vol ainsi que du dimorphisme sexuel dans cette sous-famille.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R. McN. 1983. Animal Mechanics, 2nd ed. Blackwell Scientific Publs., Oxford. 301 pp.Google Scholar
Andersen, S.O., and Weis-Fogh, T.. 1964. Resilin, a rubberlike protein in arthropod cuticle.Adv. Insect Physiol. 2: 165.CrossRefGoogle Scholar
Bouček, Z. 1958. Eine Cleonyminen-Studie; Bestimmungstabelle der Gattungen mit Beschreibungen und Notizen, eingeschlossen einige Eupelmidae (Hym. Chalcidoidea). Acta ent. Mus. nat. Pragae 32: 353386.Google Scholar
Bouček, Z. 1967. Revision of Palaearctic species of Eusandalum Ratz. (Hym., Eupelmidae). Acta ent. bohemoslov. 64: 261293.Google Scholar
Bouček, Z. 1972. On European Pteromalidae (Hymenoptera): A revision of Cleonymus, Eunotus and Spaniopus, with descriptions of new genera and species. Bull. Br. Mus. nat. Hist. (Ent.) 27: 267315.Google Scholar
Bouček, Z. 1974. A revision of the Leucospidae of the world. Bull. Br. Mus. nat. Hist. (Ent.), Suppl. 23. 240 pp.Google Scholar
Bucher, G.E. 1948. The anatomy of Monodontomerus dentipes Boh., an entomophagous chalcid. Can. J. Res. 26(D): 230281.CrossRefGoogle Scholar
Chapman, R.F. 1982. The insects, structure and function, 3rd ed. Hodder and Stoughton, Toronto. 919 pp.Google Scholar
Clausen, C.P. 1927. The bionomics of Anastatus albitarsis Ashm., parasitic in the eggs of Dictyoploca japonica Moore (Hymen.). Ann. ent. Soc. Am. 20: 461471 + 1 pl.CrossRefGoogle Scholar
Compere, J. 1962. The reality of stemites in the mesothorax of Hymenoptera. Proc. ent. Soc. Wash. 64: 224228.Google Scholar
Crossman, S.S. 1925. Two imported egg parasites of the gipsy moth, Anastatus bifasciatus Fonsc. and Schedius kuvanae Howard. J. Agric. Res. 30: 643675.Google Scholar
Daly, H.V. 1963. Close-packed and fibrillar muscles of the Hymenoptera. Ann. ent. Soc. Am. 56: 295306.CrossRefGoogle Scholar
Daly, H.V. 1964. Skeleto-muscular morphogenesis of the thorax and wings of the honey bee Apis mellifera (Hymenoptera: Apidae). Univ. Calif. Publ. Ent. 39: 77 pp.Google Scholar
Domenichini, G. 1952. Morfologia, variabilità dei caratteri e speciografia dell' Anagyrus pseudococci Gir. (Hymen. Chalcidoidea). Boll. Zool. agric. Bachic. 18: 117181.Google Scholar
Domenichini, G. 1969. Materiali per la morfologia comparata delgi Hymenoptera Chalcidoidea. Mem. Soc. ent. ital. 48: 583608.Google Scholar
Duncan, C.D. 1939. A contribution to the biology of North American vespine wasps. Stanford Univ. Publ. biol. Sci. 8(1): 272 pp.Google Scholar
Gibson, G.A.P. 1985. Some pro- and mesothoracic characters important for phylogenetic analysis of Hymenoptera, with a review of terms used for structures. Can. Ent. 117: 13951443.CrossRefGoogle Scholar
Gibson, G.A.P. 1986. Evidence for monophyly and relationships of Chalcidoidea, Mymaridae, and Mymarommatidae (Hymenoptera: Terebrantes). Can. Ent. 118: 205240.CrossRefGoogle Scholar
Gordh, G. 1975. The comparative external morphology and systematics of the neotropical parasitic fig wasp genus Idarnes (Hymenoptera: Torymidae). Kans. Univ. Sci. Bull. 50: 389455.Google Scholar
Gordh, G. 1979. Chalcidoidea pp. 743–1043 in Krombein, K.V., Hurd, B., Smith, D.R., and Burk, B.D.. (Eds.), Catalog of Hymenoptera in America North of Mexico, Vol. 1. Smithsonian Inst. Press. 1198 pp.Google Scholar
Graham, M.W.R. de V. 1969. The Pteromalidae of Northwestern Europe (Hymenoptera: Chalcidoidea). Bull. Br. Mus. nat. Hist. (Ent.), Suppl. 16. 908 pp.Google Scholar
Grandi, G. 1929. Studio morphologico e biologico della Blastophaga psenes (L.). Boll. Lab. Ent. Bologna 2: 147 pp.Google Scholar
Hanna, A.D. 1935. The morphology and anatomy of Euchalcidida caryobori Hanna. Bull. Soc. ent. Egypte 19: 326364.Google Scholar
*Heymons, R. 1899. Beiträge zur Morphologie und Entwicklungsgeschichte der Rhynchoten. Nova Acta. Abh. kaisl. Leop.-Carol. dt. Akad. Naturf. Halle 74: 349456 + 3 pls.Google Scholar
James, H.C. 1926. The anatomy of a British phytophagous chalcidoid of the genus Harmolita (Isosoma). Proc. Zool. Soc. Lond. 1: 75182.CrossRefGoogle Scholar
Jensen, M., and Weis-Fogh, T.. 1962. Biology and physics of locust flight, V. Strength and elasticity of insect cuticle. Phil. Trans. R. Soc. B 151: 204225.Google Scholar
LaSalle, J., and Noyes, J.S.. 1985. New family placement for the genus Cynipencyrtus (Hymenoptera: Chalcidoidea: Tanaostigmatidae). J.N.Y. ent. Soc. 93: 12611264.Google Scholar
Maki, T. 1938. Studies on the thoracic musculature of insects. Mem. Fac. Sci. Agric. Taihoku imp. Univ. 24: 343 pp. + 17 pls.Google Scholar
Matsuda, R. 1960 a. Morphology of the pleurosternal region of the pterothorax in insects. Ann. ent. Soc. Am. 53: 712731.CrossRefGoogle Scholar
Matsuda, R. 1960 b. A new interpretation of the pleurosternal region of the hymenopterous thorax. Acta Hymen. 1: 109113.Google Scholar
Matsuda, R. 1970. Morphology and evolution of the insect thorax. Mem. ent. Soc. Can. 76: 431 pp.Google Scholar
Michener, C.D. 1944. Comparative external morphology, phylogeny, and a classification of the bees (Hymenoptera). Bull. Am. Mus. nat. Hist. 82: 157326.Google Scholar
Noyes, J.S. 1978. On the numbers of genera and species of Chalcidoidea in the world. Entomologist's Gaz. 29: 163164.Google Scholar
Packard, C.M. 1916. Life histories and methods of rearing Hessian-fly parasites. J. Agric. Res. 6: 367381.Google Scholar
Peck, O., Bouček, Z., and Hoffer, A.. 1964. Keys to the Chalcidoidea of Czechoslovakia (Insects: Hymenoptera). Mem. ent. Soc. Can. 34: 1120.Google Scholar
Pringle, J.W.S. 1961. The flight of the bumblebee. Nat. Hist. 70(7): 2029.Google Scholar
Reid, J.A. 1941. The thorax of the wingless and short-winged Hymenoptera. Trans. R. ent. Soc. Lond. 91: 367446.CrossRefGoogle Scholar
Richards, O.W. 1956 a. An interpretation of the ventral region of the hymenopterous thorax. Proc. R. ent. Soc. Lond. (A) 31: 99104.Google Scholar
Richards, O.W. 1956 b. Hymenoptera. Introduction and keys to families. R. ent. Soc. Lond., Hndbks. Ident. Brit. Insects 6(1): 94 pp.Google Scholar
Riek, E.F. 1970. Hymenoptera. pp. 867–959 in The insects of Australia. CSIRO, Melbourne University Press, Carlton. 1029 pp.Google Scholar
Saini, M.S., and Dhillon, S.S.. 1980. Changing course of the mesopleural suture in the order Hymenoptera. J. Anim. Morphol. Physiol. 27: 19.Google Scholar
Snodgrass, R.E. 1910. The thorax of the Hymenoptera. Proc. U.S. natn. Mus. 39: 3791 + 16 pls.CrossRefGoogle Scholar
Snodgrass, R.E. 1942. The skeleto-muscular mechanisms of the honey bee. Smithson. misc. Colls. 103(2): 120 pp.Google Scholar
Snodgrass, R.E. 1956. Anatomy of the honey bee. Cornell Univ. Press, Ithaca. 334 pp.Google Scholar
Tait, N.N. 1962. The anatomy of the sawfly Perga affinis Kirby (Hymenoptera: Symphyta). Aust. J. Zool. 10: 652683.CrossRefGoogle Scholar
Trjapitzin, V.A. 1977. [The characteristic features of the morphology of adult encyrtids (Hymenoptera, Chalcidoidea, Encyrtidae) and their systematic significance.] Trudy Vses. Ent. Ob. Akad. Nauk SSSR. 58: 145199. [In Russian]Google Scholar
Ulenberg, S.A. 1983. Morphological description of Apocrypta perplexa Coquerel, the type-species of the genus (fig wasp parasites; Hymenoptera, Chalcidoidea, Torymidae). Proc. K. Ned. Akad. Wet. (C) 86: 6394.Google Scholar
Walsh, B.D., and Riley, C.V.. 1869 a. The joint-worm (Isosoma hordei, Harris). Am. Ent. 1: 149158.Google Scholar
Walsh, B.D., and Riley, C.V. 1869 b. On the group Eurytomides of the hymenopterous family Chalcididae: with remarks on the theory of species, and a description of Antigaster, a new and very anomalous genus of Chalcididae. Am. Ent. 2: 297–301, 367370.Google Scholar
Weber, H. 1925. Der thorax der Hornisse. Zoo. Jahr., Abt. fur Anat. und Ont. der Thiere 67: 1100 + 4 pls.Google Scholar
*Weber, H. 1928. Die Gliederung der Sternopleuralregion des Lepidopterenthorax. Eine vergleichende morphologische Studie zur Subcoxaltheorie. Z. wiss. Zool. 131: 181254.Google Scholar