Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T15:52:07.207Z Has data issue: false hasContentIssue false

LIFE CYCLE PATHWAYS AND THE ANALYSIS OF COMPLEX LIFE CYCLES IN INSECTS

Published online by Cambridge University Press:  31 May 2012

H.V. Danks
Affiliation:
Biological Survey of Canada (Terrestrial Arthropods), Zoology Division, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, Ontario, Canada K1P 6P4

Abstract

The structure and temporal control of insect life cycles can best be understood by viewing them as pathways along which various options (e.g. develop or enter diapause; grow rapidly or grow slowly) are chosen in response to environmental controls such as photoperiod and temperature. Simple life cycles include small numbers of such options. The combination of several successive simple elements, however, can produce remarkably complex life cycle patterns, which are more prevalent than most entomologists have recognized. The ways in which these simple elements contribute to life cycle pathways are outlined and illustrated schematically. Flow charts showing the successive decision points in the life cycle then are constructed for selected species. This approach confirms the different simple elements, and shows how they are used in combination to control seasonal life cycles in nature.

Résumé

La structure et la maîtrise temporelle des cycles vitaux des insectes peuvent être comprises le mieux en les considérant comme chemins, le long desquels des options variées sont choisies (p. ex. : de métamorphoser ou d’entrer en diapause; de croître rapidement ou de croître lentement) en réponse à des facteurs régleurs tels que la photopériode et la température. Les cycles vitaux simples n’ont que très peu de ces options. L’association de plusieurs éléments simples successifs, cependant, peut produire des patrons de cycles vitaux remarquablement complexes, qui sont plus prévalants que reconnus par la plupart des entomologistes. La manière dont ces éléments simples contribuent aux chemins des cycles vitaux est décrite et illustrée schématiquement. Des organigrammes qui signalent les points de décision pendant le cycle vital ont été dessinés en ce qui concerne certaines espèces sélectionnées. Cette manière d’aborder ces problèmes corrobore l’existence des éléments simples différents et démontre comment ils peuvent être utilisés ensemble pour maîtriser les cycles vitaux saisonniers en nature.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumgartner, J., Delucchi, V., and Genini, M.. 1981. Taxonomic characters and physiological responses to temperature and photoperiod of two Lithocolletis species mining apple leaves. Mitt. Schweiz. ent. Ges. 54: 245255.Google Scholar
Beck, S.D. 1962. Photoperiodic induction of diapause in an insect. Biol. Bull. mar. biol. Lab., Woods Hole 122: 112.CrossRefGoogle Scholar
Brown, V.K. 1980. Developmental strategies in Ectobius pallidus (Dictyoptera: Blattidae). Int. J. Invertebr. Reprod. 2: 8594.CrossRefGoogle Scholar
Brown, V.K. 1983. Developmental strategies in British Dictyoptera: Seasonal variation. pp. 111–125 in Brown, V.K., and Hodek, I. (Eds.), Diapause and Life Cycle Strategies in Insects. Junk, The Hague. 283 pp. Series Entomologica, vol. 23.Google Scholar
Church, N.S., and Salt, R.W.. 1952. Some effects of temperature on development and diapause in eggs of Melanoplus bivittatus (Say) (Orthoptera: Acrididae). Can. J. Zool. 30: 173184.CrossRefGoogle Scholar
Clifford, H.F. 1982. Life cycles of mayflies (Ephemeroptera), with special reference to voltinism. Quaest. ent. 18: 1589.Google Scholar
Corbet, P.S., Harvey, I.F., Abisgold, J., and Morris, F.. 1989. Seasonal regulation in Pyrrhosoma nymphula (Sulzer) (Zygoptera: Coenagrionidae). 2. Effect of photoperiod on larval development in spring and summer. Odonatologica 18: 333348.Google Scholar
Danks, H.V. 1983. Extreme individuals in natural populations. Bull. ent. Soc. Am. 29: 4146.Google Scholar
Danks, H.V. 1987. Insect Dormancy: An Ecological Perspective. Biological Survey of Canada (Terrestrial Arthropods), Ottawa. 439 pp.Google Scholar
Gaston, K.J., and Reavey, D.. 1989. Patterns in the life histories and feeding strategies of British macrolepidoptera. Biol. J. Linn. Soc. 37: 367381.CrossRefGoogle Scholar
Gruys, P. 1970. Growth in Bupalus piniarius (Lepidoptera, Geometridae) in relation to larval population density. Centre for Agricultural Publishing and Documentation, Wageningen. Agr. Res. Rep. 742. 128 pp.Google Scholar
Hanski, I. 1988. Four kinds of extra long diapause in insects: A review of theory and observations. Ann. Zool. Fenn. 25: 3753.Google Scholar
Hogan, T.W. 1960. The onset and duration of diapause in eggs of Acheta commodus (Walk.) (Orthoptera). Aust. J. biol. Sci. 13: 1429.CrossRefGoogle Scholar
Ingrisch, S. 1984. Embryonic development of Decticus verrucivorus (Orthoptera: Tettigoniidae). Entomologia gen. 10: 19.CrossRefGoogle Scholar
Ingrisch, S. 1986 a. The plurennial life cycles of the European Tettigoniidae (Insecta: Orthoptera). 1. The effect of temperature on embryonic development and hatching. Oecologia (Berlin) 70: 606616.CrossRefGoogle Scholar
Ingrisch, S. 1986 b. The plurennial life cycles of the European Tettigoniidae (Insecta: Orthoptera). 2. The effect of photoperiod on the induction of an initial diapause. Oecologia (Berlin) 70: 617623.CrossRefGoogle ScholarPubMed
Ingrisch, S. 1986 c. The plurennial life cycles of the European Tettigoniidae (Insecta: Orthoptera). 3. The effect of drought and the variable duration of the initial diapause. Oecologia (Berlin) 70: 624630.CrossRefGoogle ScholarPubMed
Khaldey, Ye.L. 1977. The biology, phenology and photoperiodic reaction of Forficula tomis (Dermaptera, Forficulidae). Ent. Obozr. 56: 721730. [In Russian.] [Translation in Ent. Rev. 56(4): 6–12.]Google Scholar
Lutz, P.E. 1968. Effects of temperature and photoperiod on larval development in Lestes eurinus (Odonata: Lestidae). Ecology 49: 637644.CrossRefGoogle Scholar
Norling, U. 1971. The life history and seasonal regulation of Aeshna viridis Eversm. in Southern Sweden (Odonata). Ent. Scand. 2: 170190.CrossRefGoogle Scholar
Norling, U. 1976. Seasonal regulation in Leucorrhinia dubia (van der Linden) (Anisoptera: Libellulidae). Odonatologica 5: 245263.Google Scholar
Norling, U. 1984 a. The life cycle and larval photoperiodic responses of Coenagrion hastulatum (Charpentier) in two climatically different areas (Zygoptera: Coenagrionidae). Odonatologica 13: 429449.Google Scholar
Norling, U. 1984 b. Photoperiodic control of larval development in Leucorrhinia dubia (Van der Linden): a comparison between populations from northern and southern Sweden (Anisoptera: Libellulidae). Odonatologica 13: 529550.Google Scholar
Nylin, S., Wickman, P-O., and Wiklund, C.. 1989. Seasonal plasticity in growth and development of the speckled wood butterfly, Pararge aegeria (Satyrinae). Biol. J. Linn. Soc. 38: 155171.CrossRefGoogle Scholar
Pritchard, G. 1989. The roles of temperature and diapause in the life history of a temperate-zone dragonfly: Argia vivida (Odonata: Coenagrionidae). Ecol. Ent. 14: 99108.CrossRefGoogle Scholar
Saunders, D.S. 1982. Insect Clocks, 2nd ed. Pergamon Press, Oxford, etc. 409 pp.Google Scholar
Scott, S.M., and Dingle, H.. 1990. Developmental programs and adaptive syndromes in insect life cycles. pp. 69–85 in Gilbert, F. (Ed.), Insect Life Cycles: Genetics, Evolution and Coordination. Springer, London. 258 pp.Google Scholar
Sotavalta, O., Karvonen, Eila, Karvonen, Eero, Korpela, S., and Korpela, T.. 1980. The early stages and biology of Acerbia alpina (Lepidoptera, Arctiidae). Notul. ent. 60: 8995.Google Scholar
Taylor, F., and Spalding, J.B.. 1988. Fitness functions for alternative developmental pathways in the timing of diapause induction. Am. Nat. 131: 676699.CrossRefGoogle Scholar
Wallace, D.R., and Sullivan, C.R.. 1963. Laboratory and field investigations of the effect of temperature on the development of Neodiprion sertifer (Geoff.) in the cocoon. Can. Ent. 95: 10511066.CrossRefGoogle Scholar
Wardaugh, K.G. 1980. The effects of temperature and moisture on the inception of diapause in eggs of the Australian plague locust, Chortoicetes terminifera Walker (Orthoptera: Acrididae). Aust. J. Ecol. 5: 187191.CrossRefGoogle Scholar
Wardaugh, K.G. 1986. Diapause strategies in the Australian plague locust (Chortoicetes terminifera Walker). pp. 89–104 in Taylor, F., and Karban, R. (Eds.), The Evolution of Insect Life Cycles. Springer-Verlag, New York, Berlin. 287 pp.Google Scholar