Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T06:21:20.562Z Has data issue: false hasContentIssue false

LEVELS OF SITKA SPRUCE WEEVIL, PISSODES STROBI (PECK), DAMAGE AMONG SITKA SPRUCE PROVENANCES AND FAMILIES NEAR SAYWARD, BRITISH COLUMBIA

Published online by Cambridge University Press:  31 May 2012

Rene I. Alfaro
Affiliation:
Forestry Canada, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
Cheng C. Ying
Affiliation:
British Columbia Ministry of Forests, Research Branch, Victoria, British Columbia, Canada V8W 3E7

Abstract

Variation in tree height, number of attacks by the Sitka spruce weevil (= white pine weevil) (Pissodes strobi [Peck]), tree form, and stem defect were studied in a 15-year-old Sitka spruce (Picea sitchensis [Bong.] Carr.) provenance test near Sayward, on Vancouver Island, B.C. An aggregated spatial distribution of the attacks was found in the plantation. Average number of attacks, tree form, and total tree height varied significantly among provenances and among families within provenances in both light and severe infestation patches. The number of unattacked trees varied by provenance from 5 to 51%, but in patches of severe infestation it varied from 0 to 64%. The number of attacks per tree had a significant negative effect on tree height. However, at the same level of attack, some provenances grew significantly taller than others. Thirty, 19, and 51% of all trees were classified as having a good, medium, or poor form, respectively. Among provenances located in severe infestation patches, the percentages of trees having good form varied from 4 to 64%. The type of defect that formed after an attack (minor crook, major crook, or fork) varied by provenance. Aggregated weevil attack and genetic differences among provenances may have accounted for this variation.

Résumé

La variation de la hauteur des arbres, du nombre d’attaques par le charançon du picéa (= le charançon du pin blanc), Pissodes strobi (Peck), de la forme des arbres et des défectuosités des tiges ont été étudiés auprès d’une provenance de picéa Sitka, Picea sitchensis (Bong.) Carr., âgée de 15 ans, près de Sayward, île de Vancouver, C.B. Une distribution spatiale agrégative d’attaques a été trouvée à la plantation. Le nombre moyen d’attaques, la forme des arbres et la hauteur globale des arbres ont varié significativement parmi les provenances et parmi les familles en dedans des provenances aux talles d’infestations légères et importantes, toutes les deux. Le nombre d’arbres non-attaqués a varié selon le provenance de 5 à 51%, mais dans les talles d’infestation importante, il a varié de 0 à 64%. Le nombre d’attaques par arbre a eu un effet significatif et négatif à la hauteur des arbres. Cependant, au même niveau d’attaque, quelques provenances ont poussé significativement plus grandes que d’autres. Trente, 19 et 51% de tous les arbres ont été classés comme ayant une bonne, moyenne ou mauvaise forme, respectivement. Parmi les provenances sises dans les talles d’infestations importantes, les pourcentages d’arbres ayant une bonne forme ont varié de 4 à 64%. Le genre de défectuosité qui a formé après une attaque (courbure mineure, courbure majeure, ou fourche) a varié selon la provenance. Les attaques agrégatives des charançons et les différences parmi les provenances auraient pu occasionner cette variation.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, R.I. 1980. Host selection by Pissodes strobi Peck: chemical interaction with the host plant. Ph.D. thesis, Simon Fraser University, Vancouver, B.C.134 pp.Google Scholar
Alfaro, R.I. 1982. Fifty-year-old Sitka spruce plantations with a history of intense weevil attack. J. ent. Soc. B.C. 79: 6265.Google Scholar
Alfaro, R.I. 1989 a. Stem defects in Sitka spruce induced by Sitka spruce weevil, Pissodes strobi (Peck.) pp. 177185in Alfaro, R.I., and Glover, S. (Eds.), Insects Affecting Reforestation: Biology and Damage. Proceedings of a IUFRO symposium held on July 3–9, 1988, in Vancouver, B.C., Canada, under the auspices of the XVIII International Congress of Entomology. Forestry Canada, Victoria, B.C.Google Scholar
Alfaro, R.I. 1989 b. Probability of damage to Sitka spruce by the Sitka spruce weevil, Pissodes strobi (Peck.). J. ent. Soc. B.C. 86: 4854.Google Scholar
Alfaro, R.I., and Borden, J.H.. 1982. Host selection by the white pine weevil, Pissodes strobi Peck: feeding bioassays using host and nonhost plants. Can. J. For. Res. 12: 6470.CrossRefGoogle Scholar
Alfaro, R.I., and Borden, J.H.. 1985. Factors determining the feeding of the white pine weevil on its coastal British Columbia host, Sitka spruce. Proc. ent. Soc. Ont. 116 (Supplement): 6366.Google Scholar
Alfaro, R.I., Borden, J.H., Harris, L.J., Nijholt, W.W., and McMullen, L.H.. 1984. Pine oil, a feeding deterrent for the white pine weevil, Pissodes strobi (Coleoptera: Curculionidae). Can. Ent. 116: 4144.CrossRefGoogle Scholar
Alfaro, R.I., and Omule, S.A.Y.. 1990. The effects of spacing on Sitka spruce weevil damage to Sitka spruce. Can. J. For. Res. 20: 179184.CrossRefGoogle Scholar
Alfaro, R.I., Pierce, H.D. Jr., Borden, J.H., and Oehlschlager, A.E.. 1980. Role of volatile and nonvolatile components of Sitka spruce bark as feeding stimulants for Pissodes strobi Peck (Coleoptera: Curculionidae). Can. J. Zool. 58: 626632.CrossRefGoogle Scholar
Alfaro, R.I., and Borden, J.H.. 1981. Insect feeding and oviposition deterrents from western red cedar foliage. J. Chem. Ecol. 7: 3948.CrossRefGoogle ScholarPubMed
Bridgen, M.R., Hanover, J.W., and Wilkinson, R.C.. 1979. Oleoresin characteristics of Eastern white pine seed sources and relationship to weevil resistance. Forest Sci. 25: 175183.Google Scholar
Brooks, J.E., Borden, J.H., Pierce, H.D. Jr., and Lister, G.R.. 1987 a. Seasonal variation in foliar and bud monoterpenes in Sitka spruce. Can. J. Bot. 65: 12491252.CrossRefGoogle Scholar
Brooks, J.E., Borden, J.H., and Pierce, H.D. Jr. 1987 b. Foliar and cortical monoterpenes in Sitka spruce: potential indicators of resistance to the white pine weevil, Pissodes strobi Peck (Coleoptera: Curculionidae). Can. J. For. Res. 17: 740745.CrossRefGoogle Scholar
Falkenhagen, E.R. 1978. Parent tree variation in Sitka spruce provenances, an example of fine geographic variation. Silvae Genetica 27: 2429.Google Scholar
Furniss, R.L., and Carolin, V.M.. 1977. Western forest insects. USDA For. Serv. Misc. Publ. 1339.Google Scholar
Gara, R.I., Carlson, R.L., and Hrutfiord, B.F.. 1971. Influence of some physical and host factors on the behaviour of the Sitka spruce weevil, Pissodes sitchensis, in southwestern Washington. Ann. ent. Soc. Am. 64: 467471.CrossRefGoogle Scholar
Graham, K. 1951. The Sitka spruce weevil. Can. Dep. Agric. Bi-monthly Prog. Rep. 7: 34.Google Scholar
Klinka, K., Green, R.N., Courtin, P.J., and Nuszdorfer, F.C.. 1984. Site diagnosis, tree species selection, and slashburning guidelines for the Vancouver Forest Region. B.C. Minist. For. Land. Manage. Rep. No. 25.Google Scholar
Landis, R.J., Heyman, E.R., and Koch, G.G.. 1978. Average partial association in three-way contingency tables: a review and discussion of alternative tests. Int. Stat. Rev. 46: 237254.CrossRefGoogle Scholar
MacAloney, H.J. 1930. The white pine weevil (Pissodes strobi). For. Tech. Publ. No. 28. 87 pp.Google Scholar
McMullen, L.H., Thomson, A.J., and Quenet, R.V.. 1987. Sitka spruce weevil (Pissodes strobi) population dynamics and control: a simulation model based on field relationships. Can. For. Serv. Pac. For. Cent. Inf. Rep. BC-X-288. Victoria, B.C.20 pp.Google Scholar
Mitchell, R.G., Johnson, N.E., and Wright, K.H.. 1974. Susceptibility of 10 species and hybrids to the white pine weevil (= Sitka spruce weevil) in the Pacific Northwest. USDA For. Serv. Res. Note. PNW-225.Google Scholar
Painter, R.H. 1951. Insect Resistance in Crop Plants. MacMillan Publ. Co., New York, NY. 520 pp.Google Scholar
Plank, G.H., and Gerhold, H.D.. 1965. Evaluating host resistance to the white pine weevil, Pissodes strobi, using feeding preference tests. Ann. ent. Soc. Am. 58: 527532.CrossRefGoogle Scholar
Roche, L. 1969. A genecological study of the genus Picea in British Columbia. New Phytol. 68: 505554.CrossRefGoogle Scholar
Silver, G.T. 1968. Studies on the Sitka spruce wevil, Pissodes sitchensis, in British Columbia. Can. Ent. 100: 93110.CrossRefGoogle Scholar
Stevenson, R.E. 1967. Notes on the biology of the Engelmann spruce weevil, Pissodes engelmannii (Curculionidae: Coleoptera) and its parasites and predators. Can. Ent. 99: 201213.CrossRefGoogle Scholar
Stroh, R.C., and Gerhold, H.D.. 1965. Eastern white pine characteristics related to weevil feeding. Silvae Genetica 14: 160169.Google Scholar
van Buijtenen, J.P., and Santamour, F.S. Jr. 1972. Resin crystallization related to weevil resistance in white pine (Pinus strobus). Can. Ent. 104: 215219.CrossRefGoogle Scholar
VanderSar, T.J.D. 1978. Resistance of western white pine to feeding and oviposition by Pissodes strobi Peck in western Canada. J. Chem. Ecol. 4: 641647.CrossRefGoogle Scholar
Wilkinson, R.C. 1985. Comparative white-pine weevil attack susceptibility and cortical monoterpene composition of western and eastern white pines. Forest Sci. 31: 3942.Google Scholar