Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T16:44:12.008Z Has data issue: false hasContentIssue false

INTRAPOPULATION SIZE VARIATION OF FREE-LIVING AND TREE-BORING COLEOPTERA

Published online by Cambridge University Press:  31 May 2012

Johan Andersen
Affiliation:
Institute of Biology and Geology, Box 3085 Guleng, University of Tromsø, 9001 Tromsø, Norway
Arne C. Nilssen
Affiliation:
Zoology Department, Tromsø Museum, University of Tromsø, 9000 Tromsø, Norway

Abstract

Intrapopulation size variation was studied by means of length measurements quoted in taxonomic literature and from material of various groups of Coleoptera collected in the field. The degree of variation was significantly different among groups, and generally the free-living groups had lower intrapopulation size variation than most of the tree-boring and the parasitoid groups. Several tree-boring groups (e.g. Scolytidae, Curculionidae), however, had a comparatively low variation. A high intrapopulation size variation is common in species whose larvae are unable to choose and determine their own nutritional situation. Such larvae have a restricted mobility and the quality of their food is unpredictable. This is characteristic for most of the tree-boring groups. A high size variation increases the niche width of the species and probably has a buffering effect in unpredictable environments. Those tree-borers that are able to reduce the degree of unpredictability (i. e. by parental care, specialization in choice of microhabitat and in larval morphology, as in Scolytidae) have a rather low intrapopulation size variation. There are two possibilities regarding the genetic nature of the high size variation: (1) The population contains a variety of phenotypes with genetically fixed size, and (2) each individual is flexible with the possibility of becoming large or small depending upon the nutritional conditions. Possibility (1) is in agreement with the theories of a correlation between environmental heterogeneity and a high intrapopulation genetic variation. Free-living species and those tree-borers with less intrapopulation size variation are usually subject to more uniform conditions, and if adverse conditions do arise, these species usually fail to complete their development rather than produce smaller adults.

Résumé

La variation intrapopulation de la taille a été étudiée chez plusieurs groupes de Coléoptères à partir de mesures de la longueur citées dans la littérature taxonomique, ou de matériel collectionné sur le terrain. L'ampleur de la variation s'est avérée significativement différente entre les groupes, et en général les groupes d'espèces vivant librement ont montré une variation intrapopulation de la taille qui était plus faible que la plupart des groupes de perceurs d'arbres ou de parasitoïdes. Cependant, plusieurs groupes de perceurs (ex. Scolytidae, Curculionidae), ont montré comparativement peu de variation. Une variation intrapopulation élevée de la taille est commune chez les espèces dont les larves n'ont pas la possibilité de choisir et de déterminer leur environnement trophique. Ces larves ont une mobilité réduite et la qualité de leur nourriture est imprévisible. Ceci est caractéristique de la plupart des groupes de perceurs d'arbres. Une variabilité élevée de la taille augmente l'étendue de la niche de l'espèce et a probablement un effet tampon dans les habitats imprévisibles. Chez les perceurs pouvant réduire le niveau d'imprévisibilité (par ex. soins parentaux, spécialisation de la sélection du microhabitat ou de la morphologie larvaire tel que chez les Scolytidae), la variation intrapopulation de la taille est faible. Deux possibilités existent concernant la nature génétique d'une grande variation de la taille : (1) la population comporte une diversité de phénotypes et le génotype pour la taille est fixé et (2) chaque individu est flexible, ayant la possibilité d'être gros ou petit, dépendant des conditions nutritionnelles. (1) est en accord avec les théories établissant une corrélation entre l'hétérogénéité environnementale et une grande variation génétique intrapopulation. Les espèces vivant librement et les perceurs d'arbres qui ont le moins de variation de taille intrapopulation, sont généralement exposés à des conditions plus uniformes; et si des conditions adverses se développent, ces espèces ne compléteront généralement pas leur développement plutôt que de former de petits adultes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, J. and Nilssen, A. C.. 1978. The food selection of Pytho depressus L. (Col., Pythidae). Norw. J. Ent. 25: 225226.Google Scholar
Atkins, M. D. 1967. The effect of rearing temperature on the size and fat content of the Douglas-fir beetle. Can. Ent. 99: 181187.CrossRefGoogle Scholar
Atkins, M. D. 1975. On factors affecting the size, fat content and behavior of a scolytid, Z. angew. Ent. 78: 209218.CrossRefGoogle Scholar
Ayala, F. J. and Valentine, J. W.. 1979. Evolving. The Theory and Processes of Organic Evolution. Benjamin/Cummings, California.Google Scholar
Beaver, R. A. 1974. Intraspecific competition among bark beetle larvae (Coleoptera: Scolytidae). J. Anim. Ecol. 43: 455467.CrossRefGoogle Scholar
Burke, H. E. and Hartmann, R. D.. 1922. The lead-cable borer or “short-circuit beetle” in California. Bull. U.S. Dep. Agric. 1107. 56 pp.Google Scholar
Crowson, R. A. 1981. The Biology of the Coleoptera. Academic Press, London, N.Y., Toronto, Sydney, San Francisco.Google Scholar
Cymorek, S. 1968. Adaptions in wood-boring insects: examples of morphological, anatomical, physiological and behavioural features. pp. 161180 in Rec. 18th Ann. Conv. Br. Wood Preserving Assoc.Google Scholar
Demelt, C. von. 1966. Bockkäfer oder Cerambycidae, I. Biologie mitteleuropäischer Bockkäfer (Col., Cerambycidae) unter besonderer Berücksichtigung der Larven. In Dahl, F. (Ed.), Tierwelt Dtl. 52.Google Scholar
Eck, R. 1979. Auswirkung des Wirts-wechsels auf Grösse, Proportionen und Färbung bei Rhopalicus tutela Walk. Entom. Abh. Mus. Tierk. Dresden 42: 345353.Google Scholar
Freude, H., Harde, K. W., and Lohse, G. A.. 1966. Die Käfer Mitteleuropas 9. Cerambycidae, Chrysomelidae. Goecke & Evers, Krefeld.Google Scholar
Freude, H., Harde, K. W., and Lohse, G. A.. 1967. Die Käfer Mitteleuropas 7. Clavicornia. Goecke & Evers, Krefeld.Google Scholar
Freude, H., Harde, K. W., and Lohse, G. A.. 1969. Die Käfer Mitteleuropas 8. Teredilia, Heteromera, Lamellicornia. Goecke & Evers, Krefeld.Google Scholar
Freude, H., Harde, K. W., and Lohse, G. A.. 1971. Die Käfer Mitteleuropas 3. Adephaga, Palpicornia, Histeroidea, Staphylinoidea 1. Goecke & Evers, Krefeld.Google Scholar
Freude, H., Harde, K. W., and Lohse, G. A.. 1974. Die Käfer Mitteleuropas 5. Staphylinidae II. Goecke & Evers, Krefeld.Google Scholar
Freude, H., Harde, K. W., and Lohse, G. A.. 1979. Die Käfer Mitteleuropas 6. Diversicornia. Goecke & Evers, Krefeld.Google Scholar
Graham, S. A. and Knight, F. B.. 1965. Principles of Forest Entomology. McGraw-Hill, N.Y., St. Louis, San Francisco, Toronto, London, Sydney.Google Scholar
Hamilton, W. D. 1978. Evolution and diversity under bark. In Mound, L. A. and Waloff, N. (Eds.), Diversity of Insect Faunas. Symposia Roy. Ent. Soc. Lond. 9.Google Scholar
Hansen, V. and Henriksen, K. L.. 1931. Biller IX. Vandkærer. Danm. Fauna 36.Google Scholar
Hansen, V. and Henriksen, K. L.. 1973. Biller VIII. Vandkalve og hvirvlere. Danm. Fauna 34.Google Scholar
Hansen, V. and Larsson, S. G.. 1938. Biller X. Blødvinger, klannere m.m. Danm. Fauna 44.Google Scholar
Hansen, V. and Larsson, S. G.. 1945. Biller XII. Heteromerer. Danm. Fauna 50.Google Scholar
Hansen, V. and Larsson, S. G.. 1957. Biller XIX. Almindelig del. Danm. Fauna 63.Google Scholar
Hansen, V. and Larsson, S. G.. 1965. Biller XXI. Snudebiller. Danm. Fauna 69.Google Scholar
Hansen, V. and Larsson, S. G.. 1968. Biller XXIV. Sandspringere og løbebiller. Danm. Fauna 76.Google Scholar
Hedden, R. L. and Billings, R. F.. 1977. Seasonal variations in fat content and size of the southern pine beetle in East Texas. Ann. ent. Soc. Am. 70: 876880.CrossRefGoogle Scholar
Levins, R. 1968. Evolution in Changing Environments. Princeton University Press, Cambridge.CrossRefGoogle Scholar
Lieutier, F. 1975. Humidité et dessèchement en milieu sous-cortical: Conséquences pour la fauna associée. Annls Zool. – Écol. anim. 7: 171184.Google Scholar
Lindroth, C. H. 1961. Sandjägare och jordlöpare. Fam. Carabidae. Svensk Insektfauna 35. Stockholm.Google Scholar
Lindroth, C. H. 1969. The ground-beetles (Carabidae, excl. Cicindelinae) of Canada and Alaska 6. Opusc. ent. Suppl. 34: 9451192.Google Scholar
Linsley, E. G. 1961. The Cerambycidae of North America I. Introduction. University of California Press, Berkeley, Los Angeles.Google Scholar
Linsley, E. G. 1962. The Cerambycidae of North America III. University of California Press, Berkeley, Los Angeles.Google Scholar
McLeod, M. J., Hornbach, D. J.,Guttman, S. I., Way, C. M., and Burky, A. J.. 1981. Environmental heterogeneity, genetic polymorphism, and reproductive strategies. Am. Nat. 118: 129134.CrossRefGoogle Scholar
Miller, R. S. 1967. Pattern and process in competition. Adv. ecol. Res. 4: 174.CrossRefGoogle Scholar
Nilssen, A. C. 1978. Spatial attack pattern of the bark beetle Tomicus piniperda L. (Col., Scolytidae). Norw. J. Ent. 25: 171175.Google Scholar
Novak, V., Hrozinka, F., and Stary, B.. 1976. Atlas of Instects Harmful to Forest Trees I. Elsevier, Amsterdam, Oxford, New York.Google Scholar
Palm, T. 1951. Die Holz- und Rindenkäfer der nordswedischen Laubbäume. Meddn St. Skogsforsk Inst. 40. 241 pp.Google Scholar
Parkin, E. A. 1934. Observation on the biology of Lyctus powder-post beetles, with special reference to oviposition and the egg. Ann. appl. Biol. 21: 495518.CrossRefGoogle Scholar
Parkin, E. A. 1936. A study of the food relations of the Lyctus powderpost beetles. Ann. appl. Biol. 23: 369400.CrossRefGoogle Scholar
Pianka, E. R. 1970. On r- and K- selection. Am. Nat. 104: 592597.CrossRefGoogle Scholar
Pianka, E. R. 1978. Evolutionary Ecology. Harper & Row, New York, Hagerstown, San Francisco, London.Google Scholar
Plowright, R. C. and Jay, S. C.. 1977. On size determination of bumblebee castes (Hymenoptera: Apidae). Can. J. Zool. 55: 11361138.CrossRefGoogle Scholar
Price, P. W. 1975. Insect Ecology. Wiley, New York, London, Sydney, Toronto.Google Scholar
Richards, O. W. 1948. The interaction of environmental and genetic factors in determining the weight of grain weevils, Calandra granaria (L.) (Col., Curculionidae). Proc. zool. Soc. Lond. 118: 4981.CrossRefGoogle Scholar
Rothstein, S. I. 1973. The niche-variation model — is it valid? Am. Nat. 107: 598620.CrossRefGoogle Scholar
Roughgarden, J. 1972. Evolution of niche width. Am. Nat. 106: 683718.CrossRefGoogle Scholar
Saalas, V. 1923. Die Fichtenkäfer Finnlands II. Ann. Acad. Scien. Fenn. Ser. 22.Google Scholar
Safranyik, L. and Jahren, R.. 1970. Host characteristics, brood density and size of mountain pine beetles emerging from lodgepole pine. Bi-Mon. Res. Notes 26: 3536.Google Scholar
Såtvedt, O. 1975. Overvintringsbiologien til den skarptannete barkbillen, Ips acuminatus Gyll. (Col.: Scolytidae), med særlig vekt på kuldetoleranse. Thesis, unpublished, University of Oslo.Google Scholar
Schwenke, W. 1974. Die Forstschädlinge Europas. Käfer. P. Parey, Hamburg and Berlin.Google Scholar
Smith, B. C. 1966. Variation in weight, size, and sex ratio of coccinellid adults (Coleoptera: Coccinellidae). Can. Ent. 98: 639644.CrossRefGoogle Scholar
Soulé, M. and Stewart, B. R.. 1970. The “niche-variation” hypothesis: a test and alternatives. Am. Nat. 104: 8597.CrossRefGoogle Scholar
Steiner, W. W. M. 1977. Niche width and genetic variation in Hawaiian Drosophila. Am. Nat. 111: 10371045.Google Scholar
Tennis, P. S., Koonce, J. F., and Teraguchi, M.. 1977. The effect of population density and food surface area on body weight of Acheta domesticus (L.) (Orthoptera: Gryllidae). Can. J. Zool. 55: 20042010.CrossRefGoogle Scholar
Van Valen, L. 1965. Morphological variation and width of the ecological niche. Am. Nat. 99: 377390.CrossRefGoogle Scholar