Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T13:04:26.623Z Has data issue: false hasContentIssue false

Interaction of foliage and larval age influences preference and performance of a geometrid caterpillar

Published online by Cambridge University Press:  02 April 2012

Lauren Pinault*
Affiliation:
Population Ecology Group, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6C2
Graham Thurston
Affiliation:
Population Ecology Group, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6C2, and Atlantic Forestry Centre, Canadian Forest Service, Natural Resources Canada, P.O. Box 4000, Regent Street, Fredericton, New Brunswick, Canada E3B 5P7
Dan Quiring
Affiliation:
Population Ecology Group, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6C2
*
1Corresponding author (e-mail: [email protected]).

Abstract

In two recent studies it was reported that feeding on foliage of multiple age classes can improve insect fitness, but it was not determined whether the increase in fitness was due to larvae obtaining a more balanced diet (the balanced-diet hypothesis) or to a difference in the nutritional requirements between young and old larvae (the ontogenetic hypothesis). To test these two hypotheses, we examined the foraging behaviour and performance of young (second or third to fourth instar) and old (third or fourth to fifth instar) larvae of the pale-winged gray moth, Iridopsis ephyraria (Walker) (Lepidoptera: Geometridae), on different-aged foliage of eastern hemlock, Tsuga canadensis (L.) Carrière (Pinaceae), during an outbreak in southwestern Nova Scotia. Defoliation attributed to I. ephyraria was highest on current-year foliage and gradually declined with foliage age. Young larvae were only observed feeding on current-year shoots but old larvae fed on foliage of all ages. When forced to feed on foliage of specific ages in manipulative field studies, survival rates of young and old larvae were highest on current-year and old (≥1 year old) foliage, respectively. However, both young and old larvae had higher survival rates when provided with access to foliage of all age classes than when they were forced to feed on only young or old foliage. Thus, this study supports both the balanced-diet and ontogenetic hypotheses.

Résumé

Deux études récentes indiquent que l'alimentation sur du feuillage appartenant à plusieurs classes d'âge peut augmenter la fitness des insectes, mais elles ne mentionnent pas si l'amélioration de la fitness est due à un régime alimentaire mieux équilibré chez les larves (hypothèse du régime équilibré) ou à des besoins nutritifs différents chez les larves jeunes et âgées (hypothèse ontogénique). Afin de tester ces deux hypothèses, nous avons examiné le comportement de recherche de nourriture et la performance chez des larves jeunes (de second ou troisième à quatrième stades) et âgées (troisième ou quatrième à cinquième stades) de l'arpenteuse à taches, Iridopsis ephyraria (Walker) (Lepidoptera: Geometridae), sur du feuillage d'âges différents de la pruche, Tsuga canadensis (L.) Carrière (Pinaceae) durant une épidémie dans le sud-ouest de la Nouvelle-Écosse. La défoliation attribuée à I. ephyraria est maximale sur le feuillage de l'année courante et elle décline graduellement en fonction de l'âge du feuillage. Les jeunes larves se nourrissent seulement des pousses de l'année courante, alors que les larves âgées s'alimentent de feuillage des tous les âges. Lorsque forcées de s'alimenter sur du feuillage d'âge donné lors de manipulations de terrain, les jeunes larves survivent mieux sur du feuillage de l'année courante et les larves âgées sur du feuillage plus vieux (≥1 an). Néanmoins, les larves, jeunes et âgées, ont une survie plus grande lorsqu'elles ont accès à du feuillage de tous âges que lorsqu'on les force à se nourrir seulement de feuillage jeune ou vieux. Notre étude appuie donc à la fois l'hypothèse du régime équilibré et l'hypothèse ontogénique.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernays, E.A., Jarzembowski, E.A., and Malcolm, S.B. 1991. Evolution of insect morphology in relation to plants [and discussion]. Philosophical Transactions of the Royal Society B Biological Sciences, 333: 257264.Google Scholar
Carisey, N., and Bauce, E. 1996. Impact of balsam fir foliage age on sixth-instar spruce budworm growth, development and food utilization. Canadian Journal of Forest Research, 27: 257264.CrossRefGoogle Scholar
Carroll, A.L. 1999. Physiological adaptation to temporal variation in conifer foliage by a caterpillar. The Canadian Entomologist, 131: 659669.CrossRefGoogle Scholar
Cates, R.G. 1980. Feeding patterns of monophagous, oligophagous, and polyphagous insect herbivores: the effect of resource abundance and plant chemistry. Ocologia, 46: 2231.CrossRefGoogle ScholarPubMed
Damman, H. 1987. Leaf quality and enemy avoidance by the larvae of a pyralid moth. Ecology, 68: 8897.CrossRefGoogle Scholar
Ferguson, D.C. 1954. The Lepidoptera of Nova Scotia 1. Macrolepidoptera. Bulletin of the Nova Scotia Institute of Science No. 123.Google Scholar
Godman, R.M., and Lancaster, K. 1990. Tsuga canadensis (L.) Carr. eastern hemlock. In Silvics of North America. Edited by Burns, R.M. and Honkala, B.H.. Agricultural Handbook 654, United States Department of Agriculture, Forest Service, Washington, D.C.Google Scholar
Hatcher, P.E. 1990. Seasonal and age-related variation in the needle quality of five conifer species. Oecologia, 85: 200212.CrossRefGoogle ScholarPubMed
Haukioja, E., Ossipov, V., and Lempa, K. 2002. Interactive effects of leaf maturation and phenolics on consumption and growth of a geometrid moth. Entomologia Experimentalis et Applicata, 104: 125136.CrossRefGoogle Scholar
Hochuli, D.F. 2001. Insect herbivory and ontogeny: How do growth and development influence feeding behaviour, morphology and host use? Austral Ecology, 26: 563570.CrossRefGoogle Scholar
Hunter, M.D. 2003. Effects of plant quality on the population ecology of parasitoids. Agricultural and Forest Entomology, 5: 18.CrossRefGoogle Scholar
Ide, J.-Y. 2006. Inter- and intra-shoot distributions of the ramie moth caterpillar, Arcte coerulea (Lepidoptera: Noctuidae), in ramie shrubs. Applied Entomology and Zoology, 41: 4955.CrossRefGoogle Scholar
Ikeda, T., Matsumura, F., and Benjamin, D.M. 1977. Mechanism of feeding discrimination between matured and juvenile foliage by two species of pine sawflies. Journal of Chemical Ecology, 3: 677694.CrossRefGoogle Scholar
Jensen, T.S. 1988. Variability of Norway spruce (Picea abies L.) needles: performance of spruce sawflies (Gilpinia hercyniae Htg.). Oecologia, 77: 313320.CrossRefGoogle ScholarPubMed
Karban, R., and Myers, J.H. 1989. Induced plant responses to herbivory. Annual Review of Ecology and Systematics, 20: 331348.CrossRefGoogle Scholar
McGuffin, W.C. 1977. Guide to the Geometridae of Canada (Lepidoptera) II. Subfamily Ennominae. 2. Memoirs of the Entomological Society of Canada No. 101.CrossRefGoogle Scholar
Moreau, G., Quiring, D.T., Eveleigh, E.S., and Bauce, E. 2003. Advantages of a mixed diet: feeding on several foliar age classes increases the performance of a specialist insect herbivore. Oecologia, 135: 391399.CrossRefGoogle ScholarPubMed
Parsons, K., Quiring, D., Piene, H., and Farrell, J. 2003. Temporal patterns of balsam fir sawfly defoliation and growth loss in young balsam fir. Forest Ecology and Management, 184: 3346.CrossRefGoogle Scholar
Pinault, L., Georgeson, E., Guscott, R., Jameson, R., LeBlanc, M., McCarthy, C., Lucarotti, C., Thurston, G., and Quiring, D. 2007. Life history of Iridopsis ephyraria (Lepidoptera: Geometridae), a defoliator of eastern hemlock in eastern Canada. Journal of the Acadian Entomological Society, 3: 2837.Google Scholar
Pinault, L.L., and Quiring, D.T. 2008. Sampling strategies and density-defoliation relationships for the pale-winged gray moth, Iridopsis ephyraria, on mature eastern hemlock. Forest Ecology and Management, 255: 28292834.CrossRefGoogle Scholar
Raske, A.G., West, R.J., and Retnakaran, A. 1995. Hemlock looper, Lambdina fiscellaria. In Forest insect pests in Canada. Edited by Armstrong, J.A. and Ives, W.G.H.. National Research Council of Canada and Canadian Forest Service, Ottawa, Ontario. pp. 141147.Google Scholar
Rausher, M.D. 1981. Host plant selection by Battus philenor butterflies: the roles of predation, nutrition, and plant chemistry. Ecological Monographs, 51: 120.CrossRefGoogle Scholar
Reichle, D.E., Goldstein, R.A., Van Hook, R.I., and Dodson, G.J. 1973. Analysis of insect consumption in a forest canopy. Ecology, 54: 10761084.CrossRefGoogle Scholar
Root, R.B. 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs, 43: 95124.CrossRefGoogle Scholar
Schroeder, L.A. 1986. Changes in tree leaf quality and growth performance of Lepidoptera larvae. Ecology, 67: 16281636.CrossRefGoogle Scholar
Stamp, N.E., and Bowers, M.D. 1990. Variation in food quality and temperature constrain foraging of gregarious caterpillars. Ecology, 71: 10311039.CrossRefGoogle Scholar