Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T16:50:42.926Z Has data issue: false hasContentIssue false

INFLUENCE OF WIND ON THE SPRING FLIGHT OF TRYPODENDRON LINEATUM (OLIVIER) (COLEOPTERA: SCOLYTIDAE) IN A SECOND-GROWTH CONIFEROUS FOREST

Published online by Cambridge University Press:  31 May 2012

S.M. Salom
Affiliation:
Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1W5
J.A. McLean
Affiliation:
Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1W5

Abstract

A mark–recapture study examined the spring flight dispersal of the ambrosia beetle, Trypodendron lineatum (Olivier), in an even-aged second-growth coastal forest in British Columbia. Pheromone-baited traps were placed in circular traplines at distances from 5 to 500 m from a central release location to (1) examine the relationship between wind direction and beetle catches in traps arranged around the release point, and (2) evaluate beetle catch characteristics when distances to baited traps were varied. A total of 29 800 marked beetles were released in three experiments. Upwind flight was most strongly exhibited at 5 m, with an upwind trend at 25 m, and no consistent flight pattern at 100 m, when wind movement was significantly directed. When the closest attraction was 100 m from the release point, beetles were caught uniformly in all directions indicating that flight was non-directional with respect to wind, for light wind speeds. Catches at 500-m traps tended to be downwind, thus beetles capable of flying that distance were ones that were flying with the wind. Equal numbers of beetles were captured at 5, 25, and 100 m despite increased intertrap spacings of 8, 20, and 32 m, respectively. A higher proportion of beetles were captured at 100 m when close-range traps at 5 and 25 m were not present.

Résumé

Une étude de marquage–recapture a permis d’examiner l’envoi de dispersion du scolyte Trypodendron lineatum (Olivier), dans une forêt côtière d’âge uniforme de repousse en Colombie Britannique. Des pièges à phéromones ont été placés en cercle à des distances de 5 à 500 m d’un point central de libération afin de (1) étudier la relation entre la direction du vent et les captures dans les pièges disposés autour du point de libération, et (2) évaluer les caractéristiques de capture en fonction de la distance du piège. On a libéré 29 800 scolytes marqués lors de trois tests. Le vol à contre-vent s’est manifesté le plus fortement à 5 m; on a observé une tendance au vol à contrevent à 25 m, mais aucune tendance à 100 m, alors que le mouvement du vent était significativement orienté. Lorsque les pièges les plus près étaient à 100 m du point de libération, on a capturé des scolytes dans toutes les directions, indiquant que le vol n’était pas orienté par rapport au vent à faible vitesse. A 500 m, les captures avaient tendance à provenir de l’amont, indiquant que les scolytes pouvant voler sur cette distance volaient avec le vent. Les nombres de captures à 5, 25 et 100 m étaient égaux, malgré l’augmentation concurrente de la distance inter-piège qui était de 8, 20 et 32 m, respectivement. On a capturé une proportion plus élevée de scolytes à 100 m, lorsque des pièges rapprochés n’étaient pas présents à 5 et 25 m.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, M.D. 1966. Laboratory studies on the behavior of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins. Can. Ent. 98: 953991.CrossRefGoogle Scholar
Batschelet, E. 1981. Circular Statistics in Biology. Academic Press Inc., London. 371 pp.Google Scholar
Bennett, R.B., and Borden, J.H.. 1971. Flight arrestment of tethered Dendroctonus pseudotsugae and Trypodendron lineatum (Coleoptera: Scolytidae) in response to olfactory stimuli. Ann. ent. Soc. Am. 64: 12731286.CrossRefGoogle Scholar
Chapman, J.A. 1962. Field studies on attack flight and log selection by the ambrosia beetle Trypodendron lineatum (Oliv.) (Coleoptera: Scolytidae). Can. Ent. 94: 7492.CrossRefGoogle Scholar
Chapman, J.A., and Kinghorn, J.M.. 1958. Studies of flight and attack activity of the ambrosia beetle, Trypodendron lineatum (Oliv.), and other scolytids. Can. Ent. 90: 362372.CrossRefGoogle Scholar
Choudhury, J.H., and Kennedy, J.S.. 1980. Light versus pheromone-bearing wind in the control of flight direction by bark beetles, Scolytus multistriatus. Physiol. Ent. 5: 207214.CrossRefGoogle Scholar
Gara, R.I. 1963. Studies on the flight behavior of Ips confusus (Lec.) (Coleoptera: Scolytidae) in response to attractive material. Contrib. Boyce Thompson Inst. 21: 5166.Google Scholar
Graham, K. 1959. Release by flight exercise of the chemotropic response from photopositive domination in a Scolytid beetle. Nature 1984: 283284.CrossRefGoogle Scholar
Henson, W.R. 1962. Laboratory studies on the adult behavior of Conophthorus coniperda (Coleoptera: Scolytidae). III. Flight. Ann. ent. Soc. Am. 55: 524530.CrossRefGoogle Scholar
Johnson, C.G. 1969. Migration and Dispersal of Insects by Flight. Metheun, London. 763 pp.Google Scholar
Lindgren, B.S. 1983. A multiple funnel trap for Scolytid beetles (Coleoptera). Can. Ent. 115: 299302.CrossRefGoogle Scholar
Linton, D.A., Safranyik, L., McMullen, L.H., and Betts, R.. 1987. Field techniques for rearing and marking mountian pine beetle for use in dispersal studies. J. ent. Soc. B.C. 84: 5357.Google Scholar
Nijholt, W.W. 1979. The striped ambrosia beetle, Trypodendron lineatum (Olivier): An annotated bibliography. Can. For. Serv. Inf. Rep. BC-X-121.Google Scholar
Pedgley, D. 1982. Windborne Pests and Diseases: Meteorology of Airborne Organisms. E. Horwood Ltd., England. 250 pp.Google Scholar
Rudinsky, J.A., and Daterman, G.E.. 1964. Field studies on flight patterns and olfactory responses of ambrosia beetles on Douglas-fir forests of western Oregon. Can. Ent. 96: 13391352.CrossRefGoogle Scholar
SAS Institute. 1985. SAS User's Guide: Statistics. SAS Institute, Cary, NC. 956 pp.Google Scholar
Shore, T.L., and McLean, J.A.. 1988. The use of mark–recapture to evaluate a pheromone-based mass trapping program for ambrosia beetles in a sawmill. Can. J. For. Res. 18: 11131117.CrossRefGoogle Scholar
Stinner, R.E., Barfield, C.S., Stimac, J.L., and Dohse, L.. 1983. Dispersal and movement of insect pests. A. Rev. Ent. 28: 319335.CrossRefGoogle Scholar
Thompson, G.A. 1985. Vegetation classification of the Endowment Lands. Greater Vancouver Regional District Parks Department, Burnaby, B.C. Technical Paper No. 4. 115 pp.Google Scholar
Wellington, W.G. 1983. Biometeorology of dispersal. Bull. ent. Soc. Am. Fall, 1983. pp. 2429.Google Scholar
Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall Inc., New Jersey. 718 pp.Google Scholar