Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T20:08:11.188Z Has data issue: false hasContentIssue false

INFLUENCE OF SOIL PHYSICAL FACTORS ON SURVIVAL AND DEVELOPMENT OF THE LARVAE AND PUPAE OF THE BEAN LEAF BEETLE, CEROTOMA TRIFURCATA (COLEOPTERA: CHRYSOMELIDAE)1

Published online by Cambridge University Press:  31 May 2012

P. G. Marrone
Affiliation:
Department of Entomology, North Carolina State University, Raleigh, North Carolina 2765
R. E. Stinner
Affiliation:
Department of Entomology, North Carolina State University, Raleigh, North Carolina 2765

Abstract

Effects of soil moisture, texture, and temperature on larval and pupal survival and development of the bean leaf beetle, Cerotoma trifurcata (Forster), were investigated in laboratory and greenhouse studies. In both cases, mortality rates were highest during the first instar, decreased during subsequent larval instars, then increased during the pupal stage. Under constant laboratory conditions, survival and adult weights were highest in wet and organic soils and lowest in dry and loamy sand soils. In wet and organic soils, developmental time was shorter than in other soils.

Although survival/plant in the greenhouse was greatest in sandy clay loam, survival/nodule was greatest in organic soil.

These studies, together with oviposition preference, egg survival, and larval movement experiments agree with field observations and provide some explanations for observed patterns of local and regional abundance of the bean leaf beetle in North Carolina.

Résumé

Les effets de l'humidité, de la texture et de la température du sol sur la survie et le développement des stades larvaires et pupal de la chrysomèle du haricot Cerotoma trifurcata (Forster) ont été étudiés au laboratoire et en serres. Dans les deux cas, les taux de mortalité étaient maximum au cours du premier stade, ont diminué au cours des stades subséquents pour ensuite augmenter au cours du stade pupal. Dans des conditions constantes au laboratoire, les valeurs maximales de la survie et du poids adulte ont été observés dans les sols humides et organiques, et les valeurs minimum l'ont été dans les loams sableux et secs. Dans les sols organiques et humides le temps de développement était plus court que dans le cas des autres traitements.

Bien que la survie/plant en serre ait été maximale dans un loam d'argile sableuse, la survie/nodule était maximale dans le sol organique.

Ces études, combinées à des expériences de préférence d'oviposition, de survie des oeufs et de déplacements des larves, sont en accord avec les observations du terrain et permettent d'expliquer les profiles d'abondance locale et régionale de la chrysomèle en Caroline du Nord.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. E. and Waldbauer, G. P.. 1977. Development and field testing of a quantitative technique for extracting bean leaf beetle larvae and pupae from soil. Environ. Ent. 6: 633636.CrossRefGoogle Scholar
Collier, B. D., Cox, G. W., Johnson, A. W., and Miller, D. C.. 1973. Dynamic Ecology. Prentice Hall, Englewood Cliffs, NJ. 583 pp.Google Scholar
Deitz, L. L., Van Duyn, J. W., Bradley, J. R. Jr., Rabb, R. L., Brooks, W. M., and Stinner, R. E.. 1976. A guide to the identification and biology of soybean arthropods in North Carolina. N.C. agric. Exp. Stn Tech. Bull. 238. 264 pp.Google Scholar
Eaton, A. 1978. Studies on distribution patterns, ovipositional preference, and egg and larval survival of Colaspis brunnea (F.) in North Carolina Coastal Plain soybean fields. Ph.D. Thesis, N.C. State Univ., Raleigh. 86 pp.Google Scholar
Eddy, C. O. and Nettles, W. C.. 1930. The bean leaf beetle. S.C. agric. Exp. Stn Bull. 25 pp.Google Scholar
Herzog, D. C. 1973. Some biological implications of polymorphism in the bean leaf beetle, Cerotoma trifurcata (Forster). Ph.D. Thesis, Louisiana State Univ., Baton Rouge. 176 pp.Google Scholar
Isely, D. 1930. The biology of the bean leaf beetle. Ark. agric. Exp. Stn Bull. 248. 20 pp.Google Scholar
Kogan, M., Ruesink, W. G., and McDowell, K.. 1974. Spatial and temporal distribution patterns of the bean leaf beetle, Cerotoma trifurcata (Forster) on soybeans in Illinois. Environ. Ent. 3: 607617.CrossRefGoogle Scholar
Levinson, G. A., Waldbauer, G. P., and Kogan, M.. 1979. Distribution of bean leaf beetle eggs, larvae, and pupae in relation to soybean plants: determination by emergence. cages and soil sampling techniques. Environ. Ent. 8: 10551058.CrossRefGoogle Scholar
Marrone, P. G. 1982. An inexpensive technique for controlling soil moisture in laboratory experiments with insects requiring growing plants. Pedobiology 24: 121127.CrossRefGoogle Scholar
Marrone, P. G. and Stinner, R. E.. 1983 a. Bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Chrysomelidae): physical factors affecting larval movement in soil. Environ. Ent. 12: 12831285.CrossRefGoogle Scholar
Marrone, P. G. and Stinner, R. E.. 1983 b. Effects of soil moisture and texture on oviposition preference of the bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Chrysomelidae). Environ. Ent. 12: 426428.CrossRefGoogle Scholar
Marrone, P. G. and Stinner, R. E.. 1983 c. Effects of soil physical factors on egg survival of the bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Chrysomelidae). Environ. Ent. 12: 673679.CrossRefGoogle Scholar
McClure, P. R. and Israel, D. W.. 1979. Transport of nitrogen in the xylem of soybean plants. Plant Physiol. 64: 411416.CrossRefGoogle ScholarPubMed
McConnell, W. R. 1915. A unique type of insect injury. J. econ. Ent. 8: 261266.CrossRefGoogle Scholar
Meats, A. 1967 a. The relation between soil water tension and growth rate of larvae of Tipula oleracea and Tipula paludosa (Diptera) in turf. Entomologia exp. appl. 10: 312320.CrossRefGoogle Scholar
Meats, A. 1967 b. The relation between survival and water loss in larvae of Tipula oleracea and Tipula paludosa (Diptera) on exposure to unsaturated air. J. Insect Physiol. 13: 11191131.CrossRefGoogle Scholar
Régnière, J., Rabb, R. L., and Stinner, R. E.. 1981. Popillia japonica: effect of soil moisture and texture on survival and development of egg and first instar grubs. Environ. Ent. 10: 654660.CrossRefGoogle Scholar
Sartain, J. B. and Kamprath, E. J.. 1975. Effect of liming a highly Al-saturated soil on the top and root growth and soybean nodulation. Agron. J. 67: 507510.CrossRefGoogle Scholar
Southwood, T. R. E. 1978. Ecological Methods with Particular Reference to the Study of Insect Populations, 2nd ed. Halstead Press, NY. 524 pp.Google Scholar
Tugwell, P., Rouse, E. P., and Thompson, R. G.. 1973. Insects in soybeans and a weed host (Desmodium sp.). Ark. agric. Exp. Stn Rep. Serv. 214. 18 pp.Google Scholar
Turpin, F. T. and Peters, D. C.. 1971. Survival of southern and western corn rootworm larvae in relation to soil texture. J. econ. Ent. 64: 14481451.CrossRefGoogle Scholar