Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T00:08:03.310Z Has data issue: false hasContentIssue false

The influence of developmental days on body size and allometry of head width in male Loxoblemmus angulatus (Orthoptera: Gryllidae)

Published online by Cambridge University Press:  27 August 2014

Zhuqing He
Affiliation:
School of Life Science, East China Normal University, Shanghai, China
Makio Takeda*
Affiliation:
Graduate School of Agricultural Science, Kobe University, 1-1 Rokko-dai, Nada, Kobe, Hyogo 657-8501, Japan
*
1 Corresponding author (e-mail: [email protected]).

Abstract

Male crickets belonging to the genus Loxoblemmus Saussure (Orthoptera: Gryllidae) often exhibit exaggerated facial structures with characteristic projections. Whether these structures are stable within a single species is not certified. We collected Loxoblemmus angulatus Bey-Bienko and reared the second generation under 16:8, 14:10, and 12:12 light:dark photoperiods. Body morphology of adults was measured and development days were recorded. The results showed that short daytime photoperiod made them develop slowly. Males became larger after longer developmental days. Head width was wider in males and horns on head were more exaggerated in large individuals than in small ones. Head width was allometric against pronotum width. Our study shows that the male head morphology in L. angulatus is strongly influenced by development days and it is not suitable as taxonomic characters.

Type
Systematics & Morphology
Copyright
© Entomological Society of Canada 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Bradley Sinclair

References

Blanckenhorn, W.U. 2000. The evolution of body size: what keeps organisms small? Quarterly Review of Biology, 75: 385407. doi:10.1086/393620.CrossRefGoogle ScholarPubMed
Bohonak, A.J. 2002. RMA: software for reduced major axis regression [online]. Available from http://www.bio.sdsu.edu/pub/andy/rma.html [accessed 1 October 2013.Google Scholar
Bonduriansky, R. 2007a. The evolution of condition-dependent sexual dimorphism. American Naturalist, 169: 919. doi:10.1086/510214.CrossRefGoogle ScholarPubMed
Bonduriansky, R. 2007b. Sexual selection and allometry: a critical reappraisal of the evidence and ideas. Evolution, 61: 838849. doi:10.1111/j.1558-5646.2007.00081.x.Google Scholar
Borgia, G. 1981. Mate selection in the fly Scatophaga stercoraria: female choice in a male-controlled system. Animal Behaviour, 29: 7180. doi:10.1016/S0003-3472(81)80153-4.Google Scholar
Chopard, L. 1969. Fauna of India. Orthoptera. Volume 1. Baptist Mission Press, Calcutta, India.Google Scholar
Dale, J., Dunn, P.O., Figuerola, J., Lislevand, T., Székely, T., and Whittingham, L.A. 2007. Sexual selection explains Rensch’s rule of allometry for sexual size dimorphism. Proceedings of the Royal Society B: Biological Sciences, 274: 29712979. doi:10.1098/rspb.2007.1043.Google Scholar
Emlen, D.J. and Nijhout, H.F. 2000. The development and evolution of exaggerated morphologies in insects. Annual Review of Entomology, 45: 661708. doi:10.1146/annurev.ento.45.1.661.CrossRefGoogle ScholarPubMed
Esperk, T., Tammaru, T., Nylin, S., and Teder, T. 2007. Achieving high sexual size dimorphism in insects: females add instars. Ecological Entomology, 32: 243256. doi:10.1111/j.1365-2311.2007.00872.x.Google Scholar
Gorochov, A.V. 1983. Life-forms of Grylloidea (Orthoptera) of the USSR Far East. Biologicheskie Nauki, 1: 4956.Google Scholar
Gorochov, A.V. 2001. Remarkable examples of convergence and new taxa of Gryllini (Orthoptera: Gryllidae). Zoosystematica Rossica, 9: 316350.Google Scholar
Gray, D.A. 1997. Female house crickets, Acheta domesticus, prefer the chirps of large males. Animal Behaviour, 54: 15531562. doi:10.1006/anbe.1997.0584.Google Scholar
Green, A.J. 1992. Positive allometry is likely with mate choice, competitive display and other functions. Animal Behaviour, 43: 170172. doi:10.1016/s0003-3472(05)80086-7.Google Scholar
Hieber, C.S. and Cohen, J.A. 1983. Sexual selection in the lovebug, Plecia nearctica: the role of male choice. Evolution, 37: 987992. doi:10.2307/2408412.Google ScholarPubMed
Hochkirch, A. and Damerau, M. 2009. Rapid range expansion of a wing-dimorphic bush-cricket after the 2003 climatic anomaly. Biological Journal of the Linnean Society, 97: 118127. doi:10.1111/j.1095-8312.2008.01199.x.Google Scholar
Hochkirch, A., Deppermann, J., and Gröning, J. 2008. Phenotypic plasticity in insects: the effects of substrate color on the coloration of two ground-hopper species. Evolution & Development, 10: 350359. doi:10.1111/j.1525-142X.2008.00243.x.Google Scholar
Hochkirch, A. and Gröning, J. 2008. Sexual size dimorphism in Orthoptera (sens. str.) – a review. Journal of Orthoptera Research, 17: 189196. doi:10.1665/1082-6467-17.2.189.Google Scholar
Hochkirch, A., Gröning, J., and Krause, S. 2007. Intersexual niche segregation in Cepero’s ground-hopper, Tetrix ceperoi . Evolutionary Ecology, 21: 727738. doi:10.1007/s10682-006-9147-3.Google Scholar
Huxley, J., Strauss, R.E., and Churchill, F.B. 1993. Problems of relative growth. Johns Hopkins University Press, Baltimore, United States of America.Google Scholar
Iba, M., Nagao, T., and Urano, A. 1995. Effects of population density on growth, behavior and levels of biogenic amines in the cricket, Gryllus bimaculatus . Zoological Science, 12: 695702. doi:10.2108/zsj.12.695.Google Scholar
Ichikawa, A., Ito, F., Kano, Y., Kawai, M., Tominaga, O., and Murai, T. 2006. Orthoptera of the Japanese Archipelago in color. Hokkaido University Press, Sapporo, Japan.Google Scholar
Ingrisch, S. 1998. The genera Velarifictorus, Modicogryllus and Mitius in Thailand (Ensifera: Gryllidae, Gryllinae). Entomologica Scandinavica, 29: 315359. doi:10.1163/187631298×00122.Google Scholar
Johnson, L.K. and Hubbell, S.P. 1984. Male choice. Behavioral Ecology and Sociobiology, 15: 183188. doi:10.1007/bf00292973.Google Scholar
Judge, K.A. and Bonanno, V.L. 2008. Male weaponry in a fighting cricket. PLoS One, 3: e3980. doi:10.1371/Journal.Pone.0003980.Google Scholar
Kim, H., Jang, Y., and Choe, J.C. 2011. Sexually dimorphic male horns and their use in agonistic behaviors in the horn-headed cricket Loxoblemmus denitzi (Orthoptera: Gryllidae). Journal of Ethology, 29: 435441. doi:10.1007/s10164-011-0277-x.Google Scholar
Masaki, S. 1963. Adaptation to local climatic conditions in the Emma field cricket (Orthoptera: Gryllidae). Japanese Journal of Entomology, 31: 249260.Google Scholar
Masaki, S. 1966. Photoperiodism and geographic variation in the nymphal growth of Teleogryllus yezoemma (Ohmachi et Matsuura) (Orthoptera: Gryllidae). Japanese Journal of Entomology, 34: 277288.Google Scholar
Masaki, S. 1972. Climatic adaptation and photoperiodic response in the band-legged ground cricket. Evolution, 26: 587600. doi:10.2307/2407055.Google Scholar
Masaki, S. and Walker, T.J. 1987. Cricket life-cycles. Evolutionary Biology, 21: 349423.Google Scholar
Moczek, A.P. and Emlen, D.J. 2000. Male horn dimorphism in the scarab beetle, Onthophagus taurus: do alternative reproductive tactics favour alternative phenotypes? Animal Behaviour, 59: 459466. doi:10.1006/anbe.1999.1342.Google Scholar
Montealegre-Z, F., Windmill, J.F., Morris, G.K., and Robert, D. 2009. Mechanical phase shifters for coherent acoustic radiation in the stridulating wings of crickets: the plectrum mechanism. Journal of Experimental Biology, 212: 257269. doi:10.1242/jeb.022731.Google Scholar
Parker, G.A. 1974. Assessment strategy and the evolution of fighting behaviour. Journal of Theoretical Biology, 47: 223243. doi:10.1016/0022-5193(74)90111-8.Google Scholar
Plaistow, S.J., Tsuchida, K., Tsubaki, Y., and Setsuda, K. 2005. The effect of a seasonal time constraint on development time, body size, condition, and morph determination in the horned beetle Allomyrina dichotoma L. (Coleoptera: Scarabaeidae). Ecological Entomology, 30: 692699. doi:10.1111/j.0307-6946.2005.00740.x.Google Scholar
Shine, R. 1989. Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Quarterly Review of Biology, 64: 419461. doi:10.1086/416458.Google Scholar
Tanaka, S., Arai, T., and Tanaka, K. 1999. Nymphal development, diapause and cold-hardiness in a nymph-overwintering cricket. Entomological Science, 2: 173182.Google Scholar
Tanaka, S., Matsuka, M., and Sakai, T. 1976. Effect of change in photoperiod on wing form in Pteronemobius taprobanensis Walker (Orthoptera: Gryllidae). Applied Entomology and Zoology, 11: 2732.Google Scholar
Wagner, W.E., Murray, A.M., and Cade, W.H. 1995. Phenotypic variation in the mating preferences of female field crickets, Gryllus integer . Animal Behaviour, 49: 12691281. doi:10.1006/anbe.1995.0159.Google Scholar
Walker, S.E., Roberts, J.A., Adame, I., Collins, C.J., and Lim, D. 2008. Heads up: sexual dimorphism in house crickets (Acheta domesticus). Canadian Journal of Zoology, 86: 253259. doi:10.1139/Z08-001.Google Scholar
Walker, T.J. and Masaki, S. 1989. Natural history of crickets. In Cricket behavior and neurobiology. Edited by F. Huber, T.E. Moore and W. Loher. Cornell University Press, Ithaca, New York, United States of America. Pp. 142.Google Scholar
Whitman, D.W. 2008. The significance of body size in the Orthoptera: a review. Journal of Orthoptera Research, 17: 117134. doi:10.1665/1082-6467-17.2.117.Google Scholar
Yin, H. and Liu, X.-W. 1995. Synopsis on the classification of Grylloidea and Gryllotalpoidea from China. Shanghai Scientific and Technological Literature, Shanghai, China.Google Scholar