Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T16:30:51.396Z Has data issue: false hasContentIssue false

INDUCTION AND AVERSION-LEARNING IN POLYPHAGOUS ARCTIID LARVAE (LEPIDOPTERA) IN AN ECOLOGICAL SETTING

Published online by Cambridge University Press:  31 May 2012

V.G. Dethier
Affiliation:
Department of Zoology, University of Massachusetts, Amherst, Massachusetts, USA01003

Abstract

Induction and aversion-learning are two kinds of behavior modification that depend upon ingestion for their effect. Both have previously been demonstrated in laboratory experiments. The polyphagous, ground dwelling larvae of the arctiid Diacrisia virginica Fabr. have now been shown to experience these two kinds of behavior modification in the field under natural conditions. The adaptive value of aversion-learning is self-evident. The adaptive value of induction is obscure. Evidence is presented here showing that induction overcomes hierarchical specificity before the level of deprivation becomes critical. As a consequence, plants low in the hierarchy of acceptability become fully rather than marginally acceptable, thus minimizing interruptions in feeding. Interruption is known to engender deleterious physiological responses.

Résumé

L’induction et le développement de l’aversion sont deux types de modifications comportementales dont la manifestation dépend de l’ingestion. Toutes deux ont été démontrées expérimentalement en laboratoire. On a maintenant démontré que les larves polyphages terricoles de l’arctiide Diacrisia virginica Fabr. sont sujettes à ces deux types de modifications comportementales sur le terrain en conditions naturelles. La valeur adaptative du développement de l’aversion est évident. La valeur adaptative de l’induction est obscure. On rapporte ici des faits qui montrent que l’induction peut modifier la hiérarchie de spécificité avant que la privation n’atteigne un niveau critique. Par conséquent, des plantes qui se situent dans le bas de la hiérarchie de préférence peuvent devenir totalement plutôt que marginalement acceptables, minimisant ainsi les risques d’arrêt de l’alimentation. On sait que l’arrêt de l’alimentation peut engendrer des réactions physiologiques néfastes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Boer, G., and Hanson, F.E.. 1984. Foodplant selection and induction of feeding preference among host and non-host plants in larvae of the tobacco hornworm Manduca sexta. Entomologia exp. appl. 35: 177193.CrossRefGoogle Scholar
Blaney, W.M., and Simmonds, M.S.J.. 1985. Food selection by locusts: the role of learning in rejection behaviour. Entomologia exp. appl. 39: 273278.CrossRefGoogle Scholar
Blaney, W.M., and Winstanley, C.. 1982. Food-selection behaviour in Locusta migratoria. pp. 365366in Visser, J.H., and Minks, A.K. (Eds.), Proc. 5th Internat. Symp. Insect–Plant Relationships. Pudoc, Wageningen.Google Scholar
Blaney, W.M., Winstanley, C., and Simmonds, M.J.J.. 1985. Food selection by locusts: an analysis of rejection behaviour. Entomologia exp. appl. 38: 3540.CrossRefGoogle Scholar
Cassidy, M.D. 1978. Development of an induced food plant preference in the Indian stick insect, Carausius morosus. Entomologia exp. appl. 24: 287293.CrossRefGoogle Scholar
Dethier, V.G. 1979. Oligophagy and absence of food-aversion learning in tobacco hornworms, Manduca sexta. Physiol. Ent. 4: 125130.CrossRefGoogle Scholar
Dethier, V.G. 1980. Food-aversion learning in two polyphagous caterpillars, Diacrisia virginica and Estigmene congrua. Physiol. Ent. 5: 321325.CrossRefGoogle Scholar
Dethier, V.G. 1988. The feeding behavior of a polyphagous caterpillar (Diacrisia virginica) in its natural habitat. Can. J. Zool. In press.Google Scholar
Grabstein, E.M., and Scriber, J.M.. 1982 a. The relationship between restriction of host plant consumption, and postingestive utilization of biomass and nitrogen in Hyalophora cecropia. Entomologia exp. appl. 31: 202210.CrossRefGoogle Scholar
Grabstein, E.M. 1982 b. Host-plant utilization by Hyalophora cecropia as affected by prior feeding experience. Entomologia exp. appl. 32: 262268.CrossRefGoogle Scholar
Hanson, F.E. 1976. Comparative studies on induction of food choice preferences in lepidopterous larvae. Symp. Biol. Hung. 16: 7177.Google Scholar
Hanson, F.E. 1983. The behavioral and neurophysiological basis of food plant selection by lepidopterous larvae. pp. 323in Ahmad, S. (Ed.), Herbivorous Insects. Host-Seeking Behavior and Mechanisms. Academic Press, New York.CrossRefGoogle Scholar
Jermy, T. 1987. The role of experience in the host selection of phytophagous insects. pp. 143157in Chapman, R.F., Bernays, E.A., and Stoffolano, J.G. (Eds.), Perspectives in Chemoreception and Behavior. Springer-Verlag, New York.CrossRefGoogle Scholar
Jermy, T., Bernays, E.A., and Szentesi, A.. 1982. The effect of repeated exposure to feeding deterrents on their acceptability to phytophagous insects. pp. 25–32 in Visser, J.H., and Minks, A.K. (Eds.), Proc. 5th Internat. Symp. Insect–Plant Relationships. Pudoc, Wageningen.Google Scholar
Jermy, T., Hanson, F.E., and Dethier, V.G.. 1968. Induction of specific food preference in lepidopterous larvae. Entomologia exp. appl. 11: 211230.CrossRefGoogle Scholar
Ma, W.C. 1972. Dynamics of feeding responses in Pieris brassicae Linn. as a function of chemosensory input: a behavioural, ultrastructural, and electrophysiological study. Meded. Landbouwhogesch. Wageningen 72 11: 1162.Google Scholar
Moss, C.F., and Dethier, V.G.. 1983. Central nervous system regulation of finicky feeding by the blowfly. Behav. Neuroscience 97: 541548.CrossRefGoogle ScholarPubMed
Saxena, K.N., and Schoonhoven, L.M.. 1982. Induction of orientational and feeding preferences in Manduca sexta larvae for different food sources. Entomologia exp. appl. 32: 173180.CrossRefGoogle Scholar
Schoonhoven, L.M. 1969. Sensitivity changes in some insect chemoreceptors and their effect on food selection behaviour. Proc. K. Ned. Akad. Wet. C72: 491498.Google Scholar
Schoonhoven, L.M., and Meerman, J.. 1978. Metabolic cost of changes in diet and neutralization of allochemics. Entomologia exp. appl. 24: 689693.CrossRefGoogle Scholar
Scriber, J.M. 1979. The effects of sequentially switching food plants upon biomass and nitrogen utilization by polyphagous and stenophagous Papilio larvae. Entomologia exp. appl. 25: 203215.CrossRefGoogle Scholar
Scriber, J.M. 1981. Sequential diets, metabolic costs, and growth of Spodoptera eridania (Lepidoptera: Noctuidae) feeding upon dill, lima bean, and cabbage. Oecologia (Berl.) 51: 175180.CrossRefGoogle ScholarPubMed
Scriber, J.M. 1982. The behavior and nutritional physiology of southern armyworm larvae as a function of plant species consumed in earlier instars. Entomologia exp. appl. 31: 359369.CrossRefGoogle Scholar
Shapiro, A.M. 1968. Laboratory feeding preferences of the Banded Woollybear, Isia isabella. Ann. ent. Soc. Am. 61: 12211224.CrossRefGoogle Scholar
Strebel, O. 1928. Biologische Studien an einheimischen Collombolen. II. Ernahrung und Geschmacksinn bei Hypogastrura purpurascens (Lubb) (Apter., Coll.). Zeit. Wiss. Insektenbiol. 23: 135143.Google Scholar
Szentesi, A., and Bernays, E.A.. 1984. A study of behavioural habituation to a feeding deterrent in nymphs of Schistocerca gregaria. Physiol. Ent. 9: 329340.CrossRefGoogle Scholar
Wasserman, S.S. 1982. Gypsy moth (Lymantria dispar) induced feeding preferences as a bioassay for phenetic similarity among host plants. pp. 261267in Visser, J.H., and Minks, A.K. (Eds.), Proc. 5th Internat. Symp. Insect–Plant Relationships. Pudoc, Wageningen.Google Scholar
Wiklund, C. 1973. Host plant suitability and the mechanism of host selection in larvae of Papilio machaon. Entomologia ent. appl. 16: 232242.CrossRefGoogle Scholar
Wiseman, B.R., and MacMillan, W.W.. 1980. Feeding preferences of Heliothis zea larvae preconditioned to several host crops. J. Ga. ent. Soc. 15: 449453.Google Scholar
Yamamoto, R.T. 1974. Induction of hostplant specificity in the tobacco hornworm, Manduca sexta. J. Insect Physiol. 20: 641650.CrossRefGoogle Scholar