Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-01T03:35:40.476Z Has data issue: false hasContentIssue false

Identification, distribution, and molecular characterization of the apple aphids Aphis pomi and Aphis spiraecola (Hemiptera: Aphididae: Aphidinae)

Published online by Cambridge University Press:  02 April 2012

R.G. Foottit*
Affiliation:
Invertebrate Biodiversity, National Environmental Health Program, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Canada ON K1A 0C6
D.T. Lowery
Affiliation:
Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, P.O. Box 4200, Highway 97, Summerland, Canada BC V0H 1Z0
H.E.L. Maw
Affiliation:
Invertebrate Biodiversity, National Environmental Health Program, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Canada ON K1A 0C6
M.J. Smirle
Affiliation:
Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, P.O. Box 4200, Highway 97, Summerland, Canada BC V0H 1Z0
G. Lushai
Affiliation:
South West of England Regional Development Agency, Exeter, Devon EX1 1QA, United Kingdom
*
1Corresponding author (e-mail: [email protected]).

Abstract

Morphometric techniques, DNA mitochondrial cytochrome c oxidase subunit 1 gene (COI) barcoding, and microsatellite flanking region sequences were used to assess the reliability of suggested morphological characters in distinguishing the green apple aphid (Aphis pomi De Geer) from the spirea aphid (Aphis spiraecola Patch), and to assess variation within these species. Both molecular approaches clearly distinguished two groups corresponding to the morphologically defined species. Differences in the length of the distal rostral segment and the number of lateral tubercles were found to be robust indicators of species membership, performing as well as multivariate approaches. Among A. pomi samples, microsatellite flanking region sequences were relatively uniform, whereas A. spiraecola exhibited much variability, which suggests that North American populations of the latter species are genetically much more complex.

Résumé

Des techniques morphométriques et l'utilisation de codes à barres d'ADN de COI et de séquences de la région flanquante des microsatellites nous ont servi à évaluer les caractères morphologiques qu'on a proposés pour distinguer le puceron vert du pommier (Aphis pomi De Geer) du puceron de la spirée (Aphis spiraecola Patch), et à déterminer la variation au sein de ces espèces. Les deux approches moléculaires permettent de distinguer clairement les deux groupes qui correspondent aux espèces définies morphologiquement. Les différences dans la longueur du segment distal du rostre et le nombre de tubercules latéraux sont des indicateurs robustes de l'identité spécifique; l'utilisation de ces caractères fonctionne aussi bien que les méthodes multidimensionnelles. Les séquences de la région flanquante des microsatellites sont relativement uniformes chez A. pomi, mais elles sont très variables chez A. spiraecola, ce qui laisse croire que les populations nord-américaines de cette dernière espèce sont génétiquement beaucoup plus complexes.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blackman, R.L., and Eastop, V.F. 2000. Aphids on the world's crops: an identification and information guide. 2nd ed. John Wiley and Sons, Oxford, United Kingdom.Google Scholar
Brown, M.W., Hogmire, H.W., and Schmitt, J.J. 1995. Competitive displacement of apple aphid by spirea aphid (Homoptera: Aphididae) on apple as mediated by human activities. Environmental Entomology, 24: 15811591.CrossRefGoogle Scholar
deWaard, J.R., Ivanova, N.V., Hajibabaei, M., and Hebert, P.D.N. 2007. Assembling DNA barcodes. In Environmental genomics: methods in molecular biology. Volume 410. Edited by Martin, C.C.. Humana Press, Totowa, New Jersey. pp. 275293.Google Scholar
Floyd, R.M., Wilson, J.J., and Hebert, P.D.N. 2009. DNA barcodes and insect biodiversity. In Insect biodiversity: science and society. Edited by Foottit, R.G. and Adler, P.H.. Wiley-Blackwell, Oxford, United Kingdom. pp. 417431.Google Scholar
Foottit, R.G., Halbert, S.E., Miller, G.L., Maw, H.E.L., and Russell, L.M. 2006. Adventive aphids (Hemiptera: Aphididae) of America north of Mexico. Proceedings of the Entomological Society of Washington, 108: 583610.Google Scholar
Foottit, R.G., Maw, H.E.L., von Dohlen, C.D., and Hebert, P.D.N. 2008. Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Molecular Ecology Resources, 8: 11891201.Google Scholar
Gillette, C.P. 1910. Plant louse notes, family Aphididae (continued). Plate 26. Journal of Economic Entomology, 3: 403407.Google Scholar
Hajibabaei, M., deWaard, J.R., Ivanova, N.V., Ratnasingham, S., Dooh, R.T., Kirk, S.L., Mackie, P.M., and Hebert, P.D.N. 2005. Critical factors for assembling a high volume of DNA barcodes. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 360(1462): 19591967 PMID:16214753 doi:10.1098/rstb.2005.1727.CrossRefGoogle ScholarPubMed
Hajibabaei, M., Singer, G.A.C., Hebert, P.D.N., and Hickey, D.A. 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics, 23(4): 167172 PMID:17316886 doi:10.1016/j.tig.2007.02.001.CrossRefGoogle ScholarPubMed
Halbert, S.E., and Voegtlin, D.J. 1992. Morphological differentiation between Aphis spiraecola and Aphis pomi (Homoptera: Aphididae). The Great Lakes Entomologist, 25: 18.Google Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L., and deWaard, J.R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B, Biological Sciences, 270(1512): 313322 doi:10.1098/rspb.2002.2218.Google Scholar
Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2): 111120 PMID:7441778 doi:10.1007/BF01731581.CrossRefGoogle ScholarPubMed
Lowery, D.T., Smirle, M.J., Foottit, R.G., Zurowski, C.L., and Peryea, E.H. 2005. Baseline susceptibilities to imidacloprid for green apple aphid and spirea aphid (Homoptera: Aphididae) collected from apple in the Pacific Northwest. Journal of Economic Entomology, 98(1): 188194 PMID:15765682.Google Scholar
Lowery, D.T., Smirle, M.J., Foottit, R.G., and Beers, E.H. 2006. Susceptibilities of apple aphid and spirea aphid collected from apple in the Pacific Northwest to selected insecticides. Journal of Economic Entomology, 99(4): 13691374 PMID:16937694.CrossRefGoogle ScholarPubMed
Lushai, G., Foottit, R., Maw, E., and Barrette, R. 2004. Genetic variation in the green apple aphid, Aphis pomi De Geer (Homoptera: Aphididae) detected using microsatellite DNA flanking sequences. In Aphids in a New Millenium: Proceedings of the 6th International Symposium on Aphids, Rennes, France. Edited by Simon, J.-C., Dedryver, C.A., Rispe, C., and Hulle, M.. INRA Editions, Versailles, France. pp. 245251.Google Scholar
Patch, E.M. 1914. Maine aphids of the rose family. Maine Agricultural Experiment Station Bulletin, 233: 253280.Google Scholar
Pfeiffer, D.G., Brown, M.W., and Varn, M.W. 1989. Incidence of spirea aphid (Homoptera, Aphididae) in apple orchards in Virginia, West Virginia, and Maryland. Journal of Entomological Science, 24: 145149.CrossRefGoogle Scholar
Ratnasingham, S., and Hebert, P.D.N. 2007. BOLD: the Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7(3): 355364 PMID:18784790 doi:10.1111/j.1471-8286.2007.01678.x.CrossRefGoogle ScholarPubMed
Saitou, N., and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4): 406425 PMID:3447015.Google Scholar
SAS Institute Inc. 2003. SAS. Version 9.1.3. SAS Institute Inc., Cary, North Carolina.Google Scholar
Singh, R.S., and Rhomberg, L. 1984. Allozyme variation, population structure, and sibling species in Aphis pomi. Canadian Journal of Genetics and Cytology, 26: 364373.Google Scholar
Sorensen, J., and Foottit, R.G. (Editors). 1992. Ordination in the study of morphology, evolution and systematics of insects: applications and quantitative genetic rationales. Elsevier, Amsterdam.Google Scholar
Swofford, D.L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.Google Scholar