Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T07:30:13.940Z Has data issue: false hasContentIssue false

How aquatic insects live in cold climates

Published online by Cambridge University Press:  02 April 2012

H. V. Danks
Affiliation:
Biological Survey of Canada (Terrestrial Arthropods), Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, Canada K1P 6P4 (e-mail: [email protected])

Abstract

In cold climates most aquatic habitats are frozen for many months. Nevertheless, even in such regions the conditions in different types of habitat, in different parts of one habitat, and from one year to the next can vary considerably; some water bodies even allow winter growth. Winter cold and ice provide challenges for aquatic insects, but so do high spring flows, short, cool summers, and unpredictable conditions. General adaptations to cope with these constraints, depending on species and habitat, include the use of widely available foods, increased food range, prolonged development (including development lasting more than one year per generation), programmed life cycles with diapause and other responses to environmental cues (often enforcing strict univoltinism), and staggered development. Winter conditions may be anticipated not only by diapause and related responses but also by movement for the winter to terrestrial habitats, to less severe aquatic habitats, or to different parts of the same habitat, and by construction of shelters. Winter itself is met by various types of cold hardiness, including tolerance of freezing in at least some species, especially chironomid midges, and supercooling even when surrounded by ice in others. Special cocoons provide protection in some species. A few species move during winter or resist anoxia beneath ice. Spring challenges of high flows and ice scour may be withstood or avoided by wintering in less severe habitats, penetrating the substrate, or delaying activity until after peak flow. However, where possible species emerge early in the spring to compensate for the shortness of the summer season, a trait enhanced (at least in some lentic habitats) by choosing overwintering sites that warm up first in spring. Relatively low summer temperatures are offset by development at low temperatures, by selection of warm habitats and microhabitats, and in adults by thermoregulation and modified mating activity. Notwithstanding the many abiotic constraints in cold climates, aquatic communities are relatively diverse, though dominated by taxa that combine traits such as cold adaptation with use of the habitats and foods that are most widely available and most favourable. Consequently, except in the most severe habitats, food chains and community structure are complex even at high latitudes and elevations, including many links between aquatic and terrestrial habitats. Despite the complex involvement of aquatic insects in these cold-climate ecosystems, we know relatively little about the physiological and biochemical basis of their cold hardiness and its relationship to habitat conditions, especially compared with information about terrestrial species from the same regions.

Résumé

Dans les climats froids, la plupart des habitats aquatiques sont recouverts de glace pendant plusieurs mois. Néanmoins, dans ces régions, la gamme des conditions dans les divers types d'habitats, dans les diverses parties d'un même habitat et d'une année à l'autre peut varier considérablement; certains milieux aquatiques permettent même de la croissance pendant l'hiver. Le froid et la glace de l'hiver posent des problèmes aux insectes aquatiques, mais c'est le cas aussi des forts débits du printemps, des étés courts et frais et des conditions imprévisibles. Les adaptations générales pour faire face à ces contraintes comprennent, selon l'espèce et l'habitat, l'utilisation de nourriture largement disponible, l'accroissement de l'éventail alimentaire, la prolongation du développement et en particulier, la durée de plus d'un an par génération, les cycles biologiques programmés avec présence de diapause ou d'autre réaction aux signaux environnementaux (maintenant souvent un univoltinisme strict) et un développement étalé. Les conditions hivernales peuvent être anticipées non seulement par la diapause et les autres réactions de même type, mais aussi par un déplacement vers les habitats terrestres pour l'hiver, vers des habitats aquatiques moins extrêmes ou vers des sections différentes du même habitat et par la construction de refuges. L'hiver lui-même est contré par divers types de résistance au froid, y compris la tolérance au gel au moins chez certaines espèces—particulièrement chez les moucherons chironomidés—et, chez d'autres, la surfusion même lorsqu'elles sont entourées de glace. Des cocons spéciaux fournissent une protection à certaines espèces. Quelques espèces se déplacent durant l'hiver ou résistent à l'anoxie sous la glace. Les problèmes du printemps, les forts débits et l'affouillement par la glace, peuvent être endurés ou évités par le passage de l'hiver dans des habitats moins rigoureux, l'enfouissement dans le substrat ou le report des activités après le débit maximal. Cependant, lorsque c'est possible, les espèces émergent tôt au printemps pour compenser la brièveté de la saison estivale, une caractéristique qui est favorisée (au moins dans certains habitats lénitiques) par le choix d'habitats d'hivernage qui se réchauffent les premiers au printemps. Les températures relativement basses de l'été sont compensées par un développement à basse température, par la sélection comportementale d'habitats et de microhabitats chauds et, chez les adultes, par la thermorégulation et la modification des activités reproductrices. En dépit des nombreuses contraintes abiotiques des climats froids, les communautés aquatiques y sont relativement diversifiées, bien que dominées par des taxons qui possèdent des combinaisons de caractères, tels que l'adaptation au froid et l'utilisation des habitats et des nourritures qui sont les plus disponibles et les plus avantageux. En conséquence, à l'exception des habitats les plus rigoureux, les chaînes alimentaires et la structure des communautés sont complexes même aux latitudes et aux altitudes élevées et elles comprennent de nombreux liens entre les habitats aquatiques et terrestres. Malgré le rôle complexe des insectes aquatiques dans ces écosystèmes de climat froid, on connaît relativement peu de choses sur les bases physiologiques et biochimiques de leur résistance au froid et de ses relations avec les conditions de l'habitat; cela est d'autant plus vrai si on fait des comparaisons avec ce qu'on sait des espèces terrestres des mêmes régions.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K., Solem, J.O., Nøst, T., and Hanssen, O. 1997. The macrobenthos of the pristine stream, Skiftesåa, Høylandet, Norway. Hydrobiologia, 348: 8194.CrossRefGoogle Scholar
Andrews, D., and Rigler, F.H. 1985. The effects of an Arctic winter on benthic invertebrates in the littoral zone of Char Lake, Northwest Territories. Canadian Journal of Zoology, 63: 28252834.CrossRefGoogle Scholar
Arnekleiv, J.V. 1996. Life cycle strategies and seasonal distribution of mayflies (Ephemeroptera) in a small stream in central Norway. Fauna Norve-gica Series B, 43: 1930.Google Scholar
Bale, J.S. 2002. Insects and low temperatures: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society of London B Biological Sciences, 357: 849862.CrossRefGoogle ScholarPubMed
Barton, D.R. 1980. Obserservations [sic] on the life histories and biology of Ephemeroptera and Plecoptera in northeastern Alberta, Canada. Aquatic Insects, 2: 97111.CrossRefGoogle Scholar
Barton, D.R., Pugsley, C.W., and Hynes, H.B.N. 1987. The life history and occurrence of Parachaetocladius abnobaeus (Diptera: Chironomidae). Aquatic Insects, 9: 189194.CrossRefGoogle Scholar
Beltaos, S., Calkins, D.J., Gatto, L.W., Prowse, T.D., Reedyk, S., Scrimgeour, G.J., and Wilkins, S.P. 1993. Physical effects of river ice. Chapter 2. In Environmental aspects of river ice. Edited by Prowse, T.D. and Gridley, N.C.. National Hydrology Research Institute, Saskatoon, Saskatchewan. pp. 374.Google Scholar
Bengtsson, B.E. 1981. The growth of some ephemeropteran nymphs during winter in a north Swedish river. Aquatic Insects, 3: 199208.CrossRefGoogle Scholar
Bennett, V.A., Sformo, T., Walters, K., Toien, O., Jeannet, K., Hochstrasser, R., Pan, Q., Serianni, A.S., Barnes, B.M., and Duman, J.G. 2005. Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricius): roles of antifreeze proteins, polyols, dehydration and diapause. Journal of Experimental Biology, 208: 44674477.CrossRefGoogle ScholarPubMed
Benson, N.G. 1955. Observations on anchor ice in a Michigan trout stream. Ecology, 36: 529530.CrossRefGoogle Scholar
Benstead, J.P., Deegan, L.A., Peterson, B.J., Huryn, A.D., Bowden, W.B., Suberkropp, K., Buzby, K.M., Green, A.C., and Vacca, J.A. 2005. Responses of a beaded Arctic stream to short-term N and P fertilisation. Freshwater Biology, 50: 277290.CrossRefGoogle Scholar
Berté, S.B., and Pritchard, G. 1983. The life history of Glyphopsyche irrorata (Trichoptera, Limne-philidae): a caddisfly that overwinters as an adult. Holarctic Ecology, 6: 6973.Google Scholar
Bierle, D.A. 1971. Dynamics of freshwater macrobenthic communities in arctic Alaska ponds and lakes. In The structure and function of the tundra ecosystem, Vol. 1. Edited by Brown, J. and Bowen, S.. U.S. Tundra Biome Program, U.S. International Biological Program. pp. 228233.Google Scholar
Blenckner, T. 2005. A conceptual model of climate-related effects on lake ecosystems. Hydrobiologia, 533: 114.CrossRefGoogle Scholar
Bouchard, R.W. Jr., Carrillo, M.A., and Ferrington, L.C. Jr., 2006 a. Lower lethal temperature for adult male Diamesa mendotae Muttkowski (Diptera: Chironomidae), a winter-emerging aquatic insect. Aquatic Insects, 28: 5766.CrossRefGoogle Scholar
Bouchard, R.W. Jr., Carillo, M.A., Kells, S.A., and Ferrington, L.C. Jr., 2006 b. Freeze tolerance in larvae of the winter-active Diamesa mendotae Muttkowski (Diptera: Chironomidae): a contrast to adult strategy for survival at low temperatures. Hydrobiologia, 568: 403416.CrossRefGoogle Scholar
Brittain, J.E. 1980. Mayfly strategies in a Norwegian subalpine lake. In Advances in Ephemeroptera biology. Edited by Flannagan, J.F. and Marshall, K.E.. Plenum Press, New York. pp. 179186.CrossRefGoogle Scholar
Brittain, J.E. 1983. The influence of temperature on nymphal growth rates in mountain stoneflies (Plecoptera). Ecology, 64: 440446.CrossRefGoogle Scholar
Brittain, J.E., and Eikeland, T.J. 1988. Invertebrate drift — a review. Hydrobiologia, 166: 7793.CrossRefGoogle Scholar
Brittain, J.E., and Milner, A.M. 2001. Ecology of glacier-fed rivers: current status and concepts. Freshwater Biology, 46: 15711578.CrossRefGoogle Scholar
Brittain, J.E., and Nagell, B. 1981. Overwintering at low oxygen concentrations in the mayfly Leptophlebia vespertina. Oikos, 36: 4550.CrossRefGoogle Scholar
Brown, C.J.D., Clothier, W.D., and Alvord, W. 1953. Observations on ice conditions and bottom organisms in the West Gallatin River, Montana. Proceedings of the Montana Academy of Sciences, 13: 2127.Google Scholar
Brown, L.E., Hannah, D.M., and Milner, A.M. 2003. Alpine stream habitat classification: an alternative approach incorporating the role of dynamic water source contributions. Arctic, Antarctic and Alpine Research, 35: 313322.CrossRefGoogle Scholar
Brown, L.E., Milner, A.M., and Hannah, D.M. 2006. Stability and persistence of alpine stream macro-invertebrate communities and the role of physico-chemical habitat variables. Hydrobiologia, 560: 159173.CrossRefGoogle Scholar
Butler, M.G. 1982 a. A 7-year life cycle for two Chi-ronomus species in arctic Alaskan tundra ponds (Diptera: Chironomidae). Canadian Journal of Zoology, 60: 5870.CrossRefGoogle Scholar
Butler, M.G. 1982 b. Morphological and phenological delimitation of Chironomus prior sp.n., and C. tardus sp.n. (Diptera: Chironomidae), sibling species from arctic Alaska. Aquatic Insects, 4: 219235.CrossRefGoogle Scholar
Butler, M.G. 2000. Tanytarsus aquavolans, spec. nov., and Tanytarsus nearcticus, spec. nov., two surface-swarming midges from arctic tundra ponds (Insecta, Diptera, Chironomidae). Spixiana, 23: 211218.Google Scholar
Butler, M., Miller, M.C., and Mozley, S. 1981. Macrobenthos. In Limnology of tundra ponds, Barrow, Alaska. US/IBP Synthesis Series 13. Edited by Hobbie, J.E.. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania. pp. 297339.Google Scholar
Cannings, S.G., and Cannings, R.A. 1997. Dragon-flies (Odonata) of the Yukon. In Insects of the Yukon. Edited by Danks, H.V. and Downes, J.A.. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario. pp. 169200.Google Scholar
Carrillo, M.A., Cannon, C.A., and Ferrington, L.C. Jr., 2004. Effect of sex and age on the supercooling point of the winter-active Diamesa mendotae Muttkowski (Diptera: Chironomidae). Aquatic Insects, 26: 243251.CrossRefGoogle Scholar
Chernov, Yu.I. 1978. Adaptive features of the life cycles of tundra zone insects. Zhurnal Obshchei Biologii, 39: 394402. [In Russian.]Google Scholar
Clifford, H.F. 1969. Limnological features of a northern brown-water stream, with special reference to the life-histories of the aquatic insects. American Midland Naturalist, 82: 578597.CrossRefGoogle Scholar
Clifford, H.F., Hamilton, H., and Killins, B.A. 1979. Biology of the mayfly Leptophlebia cupida (Say) (Ephemeroptera: Leptophlebiidae). Canadian Journal of Zoology, 57: 10261045.CrossRefGoogle Scholar
Convey, P., and Block, W. 1996. Antarctic Diptera: ecology, physiology and distribution. European Journal of Entomology, 93: 113.Google Scholar
Copeland, R.S., and Craig, G.B. Jr., 1990. Cold hardiness of tree-hole mosquitoes in the Great Lakes region of the United States. Canadian Journal of Zoology, 68: 13071314.CrossRefGoogle Scholar
Corbet, P.S. 1964. Autogeny and oviposition in arctic mosquitoes. Nature (London), 203: 668.CrossRefGoogle Scholar
Corbet, P.S. 1965. Reproduction in mosquitoes of the high arctic. Proceedings of the International Congress of Entomology (London 1964): 817818.Google Scholar
Corbet, P.S. 1966. Diel patterns of mosquito activity in a high arctic locality: Hazen Camp, Ellesmere Island, N.W.T. The Canadian Entomologist, 98: 12381252.CrossRefGoogle Scholar
Corbet, P.S. 1967. Facultative autogeny in arctic mosquitoes. Nature (London), 215: 662663.CrossRefGoogle Scholar
Corbet, P.S., and Danks, H.V. 1973. Seasonal emergence and activity of mosquitoes (Diptera: Culicidae) in a high arctic locality. The Canadian Entomologist, 105: 837872.CrossRefGoogle Scholar
Corbet, P.S., and Danks, H.V. 1975. Egg-laying habits of mosquitoes in the high arctic. Mosquito News, 35: 814.Google Scholar
Corbet, P.S., and Downe, A.E.R. 1966. Natural hosts of mosquitoes in Northern Ellesmere Island. Arctic, 19: 153161.CrossRefGoogle Scholar
Cowan, C.A., and Oswood, M.W. 1984. Spatial and seasonal associations of benthic macroinvertebrates and detritus in an Alaskan subarctic stream. Polar Biology, 3: 211215.CrossRefGoogle Scholar
Currie, D.C. 1997. Black flies (Diptera: Simuliide) of the Yukon, with reference to the black-fly fauna of northwestern North America. In Insects of the Yukon. Edited by Danks, H.V. and Downes, J.A.. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario. pp. 563614.Google Scholar
Currie, D.C., and Craig, D.A. 1988. Feeding strategies of larval black flies. In Black flies: ecology, population management, and annotated world list. Edited by Kim, K.C. and Merritt, R.W.. Pennsylvania State University Press, University Park. pp. 155170.Google Scholar
Daborn, G.R. 1971. Survival and mortality of coenagrionid nymphs (Odonata: Zygoptera) from the ice of an aestival pond. Canadian Journal of Zoology, 49: 569571.CrossRefGoogle Scholar
Daborn, G.R., and Clifford, H.F. 1974. Physical and chemical features of an aestival pond in western Canada. Hydrobiologia, 44: 4359.CrossRefGoogle Scholar
Dahlem, G.A., and Naczi, R.F.C. 2006. Flesh flies (Diptera: Sarcophagidae) associated with North American pitcher plants (Sarraceniaceae), with descriptions of three new species. Annals of the Entomological Society of America, 99: 218240.CrossRefGoogle Scholar
Danell, K. 1981. Overwintering of invertebrates in a shallow northern Swedish lake. Internationale Revue der Gesamten Hydrobiologie, 66: 837845.CrossRefGoogle Scholar
Danks, H.V. 1971 a. Overwintering of some north temperate and arctic Chironomidae. I. The winter environment. The Canadian Entomologist, 103: 589604.CrossRefGoogle Scholar
Danks, H.V. 1971 b. Overwintering of some north temperate and arctic Chironomidae. II. Chironomid biology. The Canadian Entomologist, 103: 18751910.CrossRefGoogle Scholar
Danks, H.V 1981. Arctic arthropods: a review of systematics and ecology with particular reference to North American fauna. Entomological Society of Canada, Ottawa, Ontario.Google Scholar
Danks, H.V. 1983. Extreme individuals in natural populations. Bulletin of the Entomological Society of America, 29: 4146.CrossRefGoogle Scholar
Danks, H.V. 1987. Insect dormancy: an ecological perspective. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario.Google Scholar
Danks, H.V. 1990. Arctic insects: instructive diversity. In Canada's missing dimension: science and history in the Canadian arctic islands, Vol. II. Edited by Harington, C.R.. Canadian Museum of Nature, Ottawa, Ontario. pp. 444470.Google Scholar
Danks, H.V. 1991 a. Winter habitats and ecological adaptations for winter survival. In Insects at low temperature. Edited by Lee, R.E. and Denlinger, D.L.. Chapman and Hall, New York and London. pp. 231259.CrossRefGoogle Scholar
Danks, H.V. 1991 b. Life-cycle pathways and the analysis of complex life cycles in insects. The Canadian Entomologist, 123: 2340.CrossRefGoogle Scholar
Danks, H.V. 1992. Long life cycles in insects. The Canadian Entomologist, 124: 167187.CrossRefGoogle Scholar
Danks, H.V. 1993 a. Seasonal adaptations in insects from the high arctic. In Seasonal adaptation and diapause in insects. Edited by Takeda, M. and Tanaka, S.. Bun-ichi-Sogo Publishers, Ltd., Tokyo. pp. 5466. [In Japanese.]Google Scholar
Danks, H.V. 1993 b. Patterns of diversity in the Canadian insect fauna. In Systematics and entomology: diversity, distribution, adaptation and application. Edited by Ball, G.E. and Danks, H.V.. Memoirs of the Entomological Society of Canada, 165: 5174.Google Scholar
Danks, H.V. 1996. The wider integration of studies on insect cold-hardiness. European Journal of Entomology, 93: 383403.Google Scholar
Danks, H.V. 1999. Life cycles in polar arthropods — flexible or programmed? European Journal of Entomology, 96: 83102.Google Scholar
Danks, H.V. 2002. Modification of adverse conditions by insects. Oikos, 99: 1024.CrossRefGoogle Scholar
Danks, H.V. 2004. The roles of insect cocoons in cold conditions. European Journal of Entomology, 101: 433437.CrossRefGoogle Scholar
Danks, H.V. 2005. Key themes in the study of seasonal adaptations in insects I. Patterns of cold hardiness. Applied Entomology and Zoology, 40: 199211.CrossRefGoogle Scholar
Danks, H.V. 2006 a. Insect adaptations to cold and changing environments. The Canadian Entomologist, 138: 123.CrossRefGoogle Scholar
Danks, H.V. 2006 b. Key themes in the study of seasonal adaptations in insects II. Life cycle patterns. Applied Entomology and Zoology, 41: 113.CrossRefGoogle Scholar
Danks, H.V. 2006 c. Short life cycles in insects and mites. The Canadian Entomologist, 138: 407463.CrossRefGoogle Scholar
Danks, H.V. 2007. The elements of seasonal adaptations in insects. The Canadian Entomologist, 139: 144.CrossRefGoogle Scholar
Danks, H.V., and Jones, J.W. 1978. Further observations on winter cocoons in Chironomidae (Diptera). The Canadian Entomologist, 110: 667669.CrossRefGoogle Scholar
Danks, H.V., and Oliver, D.R. 1972 a. Seasonal emergence of some high arctic Chironomidae (Diptera). The Canadian Entomologist, 104: 661686.CrossRefGoogle Scholar
Danks, H.V., and Oliver, D.R. 1972 b. Diel periodicities of emergence of some high arctic Chironomidae (Diptera). The Canadian Entomologist, 104: 903916.CrossRefGoogle Scholar
DeBruyn, A.M.H., and Ring, R.A. 1999. Comparative ecology of two species of Hydroporus (Coleoptera: Dytiscidae) in a high arctic oasis. The Canadian Entomologist, 131: 405420.CrossRefGoogle Scholar
Dolmen, D., and Solem, J.O. 2002. Life history of Ilybius fenestratus (Fabricius) (Coleoptera, Dytiscidae) in a central Norwegian lake. Aquatic Insects, 24: 199205.CrossRefGoogle Scholar
Downes, J.A. 1962. What is an arctic insect? The Canadian Entomologist, 94: 143162.CrossRefGoogle Scholar
Downes, J.A. 1965. Adaptations of insects in the arctic. Annual Review of Entomology, 10: 257274.CrossRefGoogle Scholar
Duffy, W.G., and Liston, C.R. 1985. Survival following exposure to subzero temperatures and respiration in cold acclimatized larvae of Enallagma boreale (Odonata: Zygoptera). Freshwater Invertebrate Biology, 4: 17.CrossRefGoogle Scholar
Duman, J.G. 2001. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annual Review of Physiology, 63: 327357.CrossRefGoogle ScholarPubMed
Duman, J.G., Wu, D.W., Xu, L., Tursman, D., and Olsen, T.M. 1991. Adaptations of insects to subzero temperatures. Quarterly Review of Biology, 66: 387410.CrossRefGoogle Scholar
Duman, J.G., Bennett, V., Sformo, T., Hochstrasser, R., and Barnes, B.M. 2004. Antifreeze proteins in Alaskan insects and spiders. Journal of Insect Physiology, 50: 259266.CrossRefGoogle ScholarPubMed
Ellis, R.J. 1978. Over-winter occurrence and maturation of gonads in adult Psychoglypha subborealis (Banks) and Glyphopsyche irrorata (Fabricius). Pan-Pacific Entomologist, 54: 178180.Google Scholar
Evans, K.W., and Brust, R.A. 1972. Induction and termination of diapause in Wyeomyia smithii (Diptera: Culicidae), and larval survival studies at low and subzero temperatures. The Canadian Entomologist, 104: 19371950.CrossRefGoogle Scholar
Farkas, M.J., and Brust, R.A. 1986. Phenology of the mosquito Wyeomyia smithii in Manitoba and Ontario. Canadian Journal of Zoology, 64: 285290.CrossRefGoogle Scholar
Friberg, N., Milner, A.M., Svendsen, L.M., Lindegaard, C., and Larsen, S.E. 2001. Macroinvertebrate stream communities along regional and physico-chemical gradients in western Greenland. Freshwater Biology, 46: 17531764.CrossRefGoogle Scholar
Frisbie, M.P., and Lee, R.E. Jr., 1997. Inoculative freezing and the problem of winter survival for freshwater macroinvertebrates. Journal of the North American Benthological Society, 16: 635650.CrossRefGoogle Scholar
Frutiger, A., and Buergisser, G.M. 2002. Life history variability of a grazing stream insect (Liponeura cinerascens minor; Diptera: Blephariceridae). Freshwater Biology, 47: 16181632.CrossRefGoogle Scholar
Füreder, L. 1999. High alpine streams: cold habitats for insect larvae. In Cold-adapted organisms. Ecology, physiology, enzymology, and molecular biology. Edited by Margesin, R. and Schinner, F.. Springer-Verlag, Berlin. pp. 181196.Google Scholar
Füreder, L., Schütz, C., Wallinger, M., and Burger, R. 2001. Physico-chemistry and aquatic insects of a glacier-fed and a spring-fed alpine stream. Freshwater Biology, 46: 16731690.CrossRefGoogle Scholar
Füreder, L., Wallinger, M., and Burger, R. 2005. Longitudinal and seasonal pattern of insect emergence in alpine streams. Aquatic Ecology, 39: 6778.CrossRefGoogle Scholar
Füreder, L., Ettinger, R., Boggero, A., Thaler, B., and Thies, H. 2006. Macroinvertebrate diversity in alpine lakes: effects of altitude and catchment properties. Hydrobiologia, 562: 123144.CrossRefGoogle Scholar
Gehrken, U. 1989. Diapause termination in eggs of the stonefly Arcynopteryx compacta (McLachland) in relation to dehydration and cold hardiness. Journal of Insect Physiology, 35: 377385.CrossRefGoogle Scholar
Gehrken, U., and Sømme, L. 1987. Increased cold hardiness in eggs of Arcynopteryx compacta (Plecoptera) by dehydration. Journal of Insect Physiology, 33: 987991.CrossRefGoogle Scholar
Gibbs, K.E. 1979. Ovoviviparity and nymphal seasonal movements of Callibaetis spp. (Ephemeroptera: Baetidae) in a pond in southwestern Quebec. The Canadian Entomologist, 111: 927931.CrossRefGoogle Scholar
Giberson, D.J., and Galloway, T.D. 1985. Life history and production of Ephoron album (Say) (Ephemeroptera: Polymitarcidae) in the Valley River, Manitoba. Canadian Journal of Zoology, 63: 16681674.CrossRefGoogle Scholar
Giberson, D., and Hardwick, M.L. 1999. Pitcher plants (Sarracenia purpurea) in eastern Canadian peatlands: ecology and conservation of the invertebrate inquilines. In Invertebrates in freshwater wetlands of North America: ecology and management. Edited by Batzer, D.P., Rader, R.B., and Wissinger, S.A.. John Wiley and Sons, Inc., New York. pp. 401422.Google Scholar
Giberson, D.J., and Rosenberg, D.M. 1992 a. Effects of temperature, food quantity, and nymphal rearing density on life-history traits of a northern population of Hexagenia (Ephemeroptera:Ephemeridae). Journal of the North American Benthological Society, 11: 181193.CrossRefGoogle Scholar
Giberson, D.J., and Rosenberg, D.M. 1992 b. Egg development in Hexagenia limbata (Ephemeroptera:Ephemeridae) from Southern Indian Lake, Manitoba: temperature effects and diapause. Journal of the North American Benthological Society, 11: 194203.CrossRefGoogle Scholar
Giberson, D.J., and Rosenberg, D.M. 1994. Life histories of burrowing mayflies (Hexagenia limbata and H. rigida, Ephemeroptera: Ephemeridae) in a northern Canadian reservoir. Freshwater Biology, 32: 501518.CrossRefGoogle Scholar
Giberson, D.J., Burian, S.K., and Shouldice, M. 2007. Life history of the northern mayfly, Baetis bundyae (Ephemeroptera) in Rankin Inlet, Nunavut Territory, Canada, with updates to the mayflies of Canada list. The Canadian Entomologist. In press.Google Scholar
Gíslason, G.M., Ólafsson, J.S., and Adalsteinsson, H. 2000. Life in glacial and alpine rivers in central Iceland in relation to physical and chemical parameters. Nordic Hydrology, 31: 411422.CrossRefGoogle Scholar
Gíslason, G.M., Ađalsteinsson, H., Hansen, I., Ólafsson, J.S., and Svavarsdóttir, K. 2001. Longitudinal changes in macroinvertebrate assemblages along a glacial river system in central Iceland. Freshwater Biology, 46: 17371751.CrossRefGoogle Scholar
Goddeeris, B. 2004. Diapause and ecological strategies in Chironomidae (Diptera). Journal of Limnology, 63 (Suppl. 1): 92.Google Scholar
Harper, P.P. 1981. Ecology of streams at high latitudes. In Perspectives in running water ecology. Edited by Lock, M.A. and Williams, D.D.. Plenum Press, New York. pp. 313337.CrossRefGoogle Scholar
Harvey, C.J., Peterson, B.J., Deegan, L.A., Bowden, W.B., Hershey, A.E., Miller, M.C., and Finlay, J.C. 1998. Biological responses to fertilization of Oksrukuyik Creek, a tundra stream. Journal of the North American Benthological Society, 17: 190209.CrossRefGoogle Scholar
Haufe, W.O. 1957. Physical environment and behaviour of immature stages of Aedes communis (Deg.) (Diptera: Culicidae) in subarctic Canada. The Canadian Entomologist, 89: 120139.CrossRefGoogle Scholar
Haufe, W.O., and Burgess, L. 1956. Development of Aedes (Diptera: Culicidae) at Fort Churchill, Manitoba, and prediction of dates of emergence. Ecology, 37: 500519.CrossRefGoogle Scholar
Hayes, B.P., and Murray, D.A. 1987. Species composition and emergence of Chironomidae (Diptera) from three high arctic streams on Bathurst Island, Northwest Territories, Canada. Entomologica Scandinavica Supplementum, 29: 355360.Google Scholar
Heino, J. 2005. Functional biodiversity of macro-invertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biology, 50: 15781587.CrossRefGoogle Scholar
Hershey, A.E. 1985 a. Littoral chironomid communities in an arctic Alaskan lake. Holarctic Ecology, 8: 3948.Google Scholar
Hershey, A.E. 1985 b. Effects of predatory sculpin on the chironomid communities in an arctic lake. Ecology, 66: 11311138.CrossRefGoogle Scholar
Hershey, A.E., Hiltner, A.L., Hullar, M.A.J., Miller, M.C., Vestal, J.R., Lock, M.A., Rundle, S., and Peterson, B.J. 1988. Nutrient influence on a stream grazer: Orthocladius microcommunities respond to nutrient input. Ecology, 69: 13831392.CrossRefGoogle Scholar
Hershey, A.E., Merritt, R.W., and Miller, M.C. 1995. Insect diversity, life history, and trophic dynamics in arctic streams, with particular emphasis on black flies (Diptera: Simuliidae). In Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Edited by Chapin, F.S. III, and Körner, C.. Ecological Studies Vol. 113. Springer-Verlag, Berlin, Heidelberg. pp. 283295.Google Scholar
Hershey, A.E., Bowden, W.B., Deegan, L.A., Hobbie, J.E., Peterson, B.J., Kipphut, G.W., Kling, G.W., Lock, M.A., Merritt, R.W., Miller, M.C., Vestal, J.R., and Schuldt, J.A. 1997. The Kuparuk River: a long-term study of biological and chemical processes in an arctic river. In Freshwaters of Alaska: ecological syntheses. Edited by Milner, A.M. and Oswood, M.W.. Springer-Verlag, New York. pp. 107130.CrossRefGoogle Scholar
Hershey, A.E., Beaty, S., Fortino, K., Kelly, S., Keyse, M., Luecke, C., O'Brien, W.J., and Whalen, S.C. 2006. Stable isotope signatures of benthic invertebrates in arctic lakes indicate limited coupling to pelagic production. Limnology and Oceanography, 51: 177188.CrossRefGoogle Scholar
Hieber, M., Robinson, C.T., Uehlinger, U., and Ward, J.V. 2002. Are alpine lake outlets less harsh than other alpine streams? Archiv für Hydrobiologie, 154: 199223.CrossRefGoogle Scholar
Hieber, M., Robinson, C.T., and Uehlinger, U. 2003. Seasonal and diel patterns of invertebrate drift in different alpine stream types. Freshwater Biology, 48: 10781092.CrossRefGoogle Scholar
Hieber, M., Robinson, C.T., Uehlinger, U., and Ward, J.V. 2005. A comparison of benthic macroinvertebrate assemblages among different types of alpine streams. Freshwater Biology, 50: 20872100.CrossRefGoogle Scholar
Hoback, W.W., and Stanley, D.W. 2001. Insects in hypoxia. Journal of Insect Physiology, 47: 533542.CrossRefGoogle ScholarPubMed
Hodkinson, I.D., and Bird, J.M. 2004. Anoxia tolerance in high Arctic terrestrial microarthropods. Ecological Entomology, 29: 506509.CrossRefGoogle Scholar
Holmstrup, M., Bayley, M., and Ramløv, H. 2002. Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proceedings of the National Academy of Sciences of the United States of America, 99: 57165720.CrossRefGoogle ScholarPubMed
Hughes, J.M., Mather, P.B., Sheldon, A.L., and Allendorf, F.W. 1999. Genetic structure of the stonefly, Yoraperla brevis, populations: the extent of gene flow among adjacent montane streams. Freshwater Biology, 41: 6372.CrossRefGoogle Scholar
Huryn, A.D., Slavik, K.A., Lowe, R.L., Parker, S.M., Anderson, D.S., and Peterson, B.J. 2005. Landscape heterogeneity and the biodiversity of Arctic stream communities: a habitat template analysis. Canadian Journal of Fisheries and Aquatic Sciences, 62: 19051919.CrossRefGoogle Scholar
Irons, J.G. III,. 1988. Life history patterns and trophic ecology of Trichoptera in two Alaska (U.S.A.) subarctic streams. Canadian Journal of Zoology, 66: 12581265.CrossRefGoogle Scholar
Irons, J.G. III, and Oswood, M.W. 1992. Seasonal temperature patterns in an arctic and two subarctic Alaskan (USA) headwater streams. Hydrobiologia, 237: 147157.CrossRefGoogle Scholar
Irons, J.G. III, Ray, S.R., Miller, L.K., and Oswood, M.W. 1989. Spatial and seasonal patterns of streambed water temperatures in an Alaskan subarctic stream. In Proceedings of the symposium on headwaters hydrology, June 1989, Missoula, Montana. Edited by Woessner, W.W. and Potts, D.F.. American Water Resources Association, Bethesda, Maryland. pp. 381390.Google Scholar
Irons, J.G. III, Miller, L.K., and Oswood, M.W. 1993. Ecological adaptations of aquatic macro-invertebrates to overwintering in interior Alaska (U.S.A.) subarctic streams. Canadian Journal of Zoology, 71: 98108.CrossRefGoogle Scholar
Irons, J.G. III, Oswood, M.W., Stout, R.J., and Pringle, C.M. 1994. Latitudinal patterns in leaf litter breakdown: is temperature really important? Freshwater Biology, 32: 401411.CrossRefGoogle Scholar
Johansson, F., and Rowe, L. 1999. Life history and behavioral responses to time constraints in a damselfly. Ecology, 80: 12421252.CrossRefGoogle Scholar
Johansson, F., Stoks, R., Rowe, L., and De Block, M. 2001. Life history plasticity in a damselfly: effects of combined time and biotic constraints. Ecology, 82: 18571869.CrossRefGoogle Scholar
Kevan, P.G. 1989. Thermoregulation in arctic insects and flowers: adaptation and co-adaptation in behaviour, anatomy, and physiology. In Thermal physiology. Edited by Mercer, J.B.. Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam. pp. 747753.Google Scholar
Knispel, S., Sartori, M., and Brittain, J.E. 2006. Egg development in the mayflies of a Swiss glacial floodplain. Journal of the North American Benthological Society, 25: 430443.CrossRefGoogle Scholar
Kohshima, S. 1984. A novel cold-tolerant insect found in a Himalayan glacier. Nature (London), 310: 225227.CrossRefGoogle Scholar
Kurtak, D. 1974. Overwintering of Simulium pictipes Hagen (Diptera: Simuliidae) as eggs. Journal of Medical Entomology, 11: 383384.CrossRefGoogle ScholarPubMed
Langton, P.H. 1998. Micropsectra silvesterae n. sp., and Tanytarsus heliomesonyctios n. sp., (Diptera: Chironomidae), two parthenogenetic species from Ellesmere Island, Arctic Canada. Journal of the Kansas Entomological Society, 71: 208215.Google Scholar
Larson, D.J. 1997. Dytiscid water beetles (Coleoptera: Dytiscidae) of the Yukon. In Insects of the Yukon. Edited by Danks, H.V. and Downes, J.A.. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario. pp. 491522.Google Scholar
Lee, J.O., and Hershey, A.E. 2000. Effects of aquatic bryophytes and long-term fertilization on arctic stream insects. Journal of the North American Benthological Society, 19: 697708.CrossRefGoogle Scholar
Lee, R.E. Jr., 1991. Principles of insect low temperature tolerance. In Insects at low temperature. Edited by Lee, R.E. Jr., and Denlinger, D.L.. Chapman and Hall, New York. pp. 1746.CrossRefGoogle Scholar
Lencioni, V. 2004. Survival strategies of freshwater insects in cold environments. Journal of Limnology, 63(Suppl. 1): 4555.CrossRefGoogle Scholar
Lepori, F., Barbieri, A., and Ormerod, S.J. 2003. Effects of episodic acidification on macroinvertebrate assemblages in Swiss alpine streams. Freshwater Biology, 48: 18731885.CrossRefGoogle Scholar
Lillehammer, A. 1987. Diapause and quiescence in eggs of Systellognatha stonefly species (Plecoptera) occuring [sic] in alpine areas of Norway. Annales de Limnologie, 23: 179184.CrossRefGoogle Scholar
Lods-Crozet, B., Lencioni, V., Ólafsson, J.S., Snook, D.L., Velle, G., Brittain, J.E., Castella, E., and Rossaro, B. 2001. Chironomid (Diptera: Chironomidae) communities in six European glacier-fed streams. Freshwater Biology, 46: 17911809.CrossRefGoogle Scholar
Lundheim, R. 2002. Physiological and ecological significance of biological ice nucleators. Philosophical Transactions of the Royal Society of London B Biological Sciences, 357: 937943.CrossRefGoogle ScholarPubMed
Madder, D.J., Surgeoner, G.A., and Helson, B.V. 1983. Induction of diapause in Culex pipiens and Culex restuans (Diptera: Culicidae) in southern Ontario. The Canadian Entomologist, 115: 877883.CrossRefGoogle Scholar
Madder, M.C.A., Rosenberg, D.M., and Wiens, A.P. 1977. Larval cocoons in Eukiefferiella claripennis (Diptera: Chironomidae). The Canadian Entomologist, 109: 891892.CrossRefGoogle Scholar
Malmqvist, B. 1999. Life history of Metacnephia lyra, a blackfly highly characteristic of large Swedish river rapids at the time of maximum discharge (Diptera: Simuliidae). Aquatic Insects, 21: 8998.CrossRefGoogle Scholar
Meier, G.M., Meyer, E.I., and Meyns, S. 2000. Lipid content of stream macroinvertebrates. Archiv für Hydrobiologie, 147: 447463.CrossRefGoogle Scholar
Mendl, H., and Müller, K. 1978. The colonization cycle of Amphinemura standfussi Ris (Ins.: Plecoptera) in the Abisko area. Hydrobiologia, 60: 109111.CrossRefGoogle Scholar
Messner, B., Groth, I., and Taschenberger, D. 1983. Zum jahreszeitlichen Wanderverhalten der Grundwanze Aphelocheirus aestivalis. Zoologische Jahrbücher, Abteilung für Systematik Oekologie und Geographie der Tiere, 110: 323331.Google Scholar
Miller, M.C., and Stout, J.R. 1989. Variability of macroinvertebrate community composition in an arctic and subarctic stream. Hydrobiologia, 172: 111127.CrossRefGoogle Scholar
Milner, A.M., and Petts, G.E. 1994. Glacial rivers: physical habitat and ecology. Freshwater Biology, 32: 295307.CrossRefGoogle Scholar
Milner, A.M., Irons, J.G. III, and Oswood, M.W. 1997. The Alaskan landscape: an introduction for limnologists. In Freshwaters of Alaska: ecological syntheses. Edited by Milner, A.M. and Oswood, M.W.. Springer-Verlag, New York. pp. 144.CrossRefGoogle Scholar
Milner, A.M., Conn, S.C., and Brown, L.E. 2006. Persistence and stability of macroinvertebrate communities in streams of Denali National Park, Alaska: implications for biological monitoring. Freshwater Biology, 51: 373387.CrossRefGoogle Scholar
Monaghan, M.T., Spaak, P., Robinson, C.T., and Ward, J.V. 2002. Population genetic structure of 3 alpine stream insects: influences of gene flow, demographics, and habitat fragmentation. Journal of the North American Benthological Society, 21: 114131.CrossRefGoogle Scholar
Moore, M.V., and Lee, R.E. Jr., 1991. Surviving the big chill: overwintering strategies of aquatic and terrestrial insects. American Entomologist, 37: 111118.CrossRefGoogle Scholar
Mousavi, S.K., Sandring, S., and Amundsen, P.-A. 2002. Diversity of chironomid assemblages in contrasting subarctic lakes: impact of fish predation and lake size. Archiv für Hydrobiologie, 154: 461484.CrossRefGoogle Scholar
Müller, K., Mendl, H., Dahl, M., and Müller-Haeckel, A. 1976. Biotopwahl und Colonization Cycle von Plecopteren in einem subarktischen Gewässersystem. Entomologisk Tidskrift, 97: 16.Google Scholar
Mutch, R.A., and Pritchard, G. 1986. Development rates of eggs of some Canadian stoneflies (Plecoptera) in relation to temperature. Journal of the North American Benthological Society, 5: 272277.CrossRefGoogle Scholar
Nagell, B. 1977. Survival of Cloeon dipterum (Ephemeroptera) larvae under anoxic conditions in winter. Oikos, 29: 161165.CrossRefGoogle Scholar
Nagell, B. 1980. Overwintering strategy of Cloeon dipterum (L.) larvae. In Advances in Ephemeroptera biology. Edited by Flannagan, J.F. and Marshall, K.E.. Plenum Press, New York. pp. 259264.CrossRefGoogle Scholar
Nagell, B., and Brittain, J.E. 1977. Winter anoxia — a general feature of ponds in cold temperate regions. Internationale Revue der Gesamten Hydrobiologie, 62: 821824.CrossRefGoogle Scholar
Nolte, U., and Hoffmann, T. 1992. Fast life in cold water: Diamesa incallida (Chironomidae). Ecography, 15: 2530.CrossRefGoogle Scholar
Norling, U. 1976. Seasonal regulation in Leucorrhinia dubia (Vander Linden) (Anisoptera: Libellulidae). Odonatologica, 5: 245263.Google Scholar
Norling, U. 1984 a. The life cycle and larval photo-periodic responses of Coenagrion hastulatum (Charpentier) in two climatically different areas (Zygoptera: Coenagrionidae). Odonatologica, 13: 429449.Google Scholar
Norling, U. 1984 b. Photoperiodic control of larval development in Leucorrhinia dubia (Vander Linden): a comparison between populations from northern and southern Sweden (Anisoptera: Libellulidae). Odonatologica, 13: 529550.Google Scholar
Norling, U. 1984 c. Life history patterns in the northern expansion of dragonflies. Advances in Odonatology, 2: 127156.Google Scholar
O'Brien, W.J., Bahr, M., Hershey, A.E., Hobbie, J.E., Kipphut, G.W., Kling, G.W., Kling, H., McDonald, M., Miller, M.C., Rublee, P., and Vestal, J.R. 1997. The limnology of Toolik Lake. In Freshwaters of Alaska: ecological syntheses. Edited by Milner, A.M. and Oswood, M.W.. Springer-Verlag, New York. pp. 61106.CrossRefGoogle Scholar
økland, B. 1991. Laboratory studies of egg development and diapause in Isoperla obscura (Plecoptera) from a mountain stream in Norway. Freshwater Biology, 25: 485495.CrossRefGoogle Scholar
Oliver, D.R. 1964. A limnological investigation of a large arctic lake, Nettilling Lake, Baffin Island. Arctic, 17: 6983.CrossRefGoogle Scholar
Oliver, D.R. 1968. Adaptations of arctic Chirono-midae. Annales Zoologici Fennici, 5: 111118.Google Scholar
Oliver, D.R. 1976. Chironomidae (Diptera) of Char Lake, Cornwallis Island, N.W.T., with descriptions of two new species. The Canadian Entomologist, 108: 10531064.CrossRefGoogle Scholar
Oliver, D.R. 1983. Male dimorphism in an arctic chironomid. Memoirs of the American Entomological Society, 34: 235240.Google Scholar
Oliver, D.R., and Corbet, P.S. 1966. Aquatic habitats in a high arctic locality: the Hazen Camp study area, Ellesmere Island, N.W.T. Defence Research Board of Canada, Directorate of Physical Research (G), Hazen 26, Ottawa, Ontario.Google Scholar
Oliver, D.R., and Dillon, M.E. 1997. Chironomids (Diptera: Chironomidae) of the Yukon Arctic North Slope and Herschel Island. In Insects of the Yukon. Edited by Danks, H.V. and Downes, J.A.. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario. pp. 615636.Google Scholar
Olsen, T.M., Sass, S.J., Li, N., and Duman, J.G. 1998. Factors contributing to seasonal increases in inoculative freezing resistance in overwintering fire-colored beetle larvae Dendroides canadensis (Pyrochroidae). Journal of Experimental Biology, 201: 15851594.CrossRefGoogle Scholar
Olsson, T.I. 1981. Overwintering of benthic macroinvertebrates in ice and frozen sediment in a north Swedish river. Holarctic Ecology, 4: 161166.Google Scholar
Olsson, T.I. 1982. Overwintering sites and freezing tolerance of benthic invertebrates in a north Swedish river. Cryo-Letters, 3: 297298.Google Scholar
Olsson, T.I. 1983. Seasonal variation in the lateral distribution of mayfly nymphs in a boreal river. Holarctic Ecology, 6: 333339.Google Scholar
Oswood, M.W. 1989. Community structure of benthic invertebrates in interior Alaskan (USA) streams and rivers. Hydrobiologia, 172: 97110.CrossRefGoogle Scholar
Oswood, M.W. 1997. Streams and rivers of Alaska: a high latitude perspective on running waters. In Freshwaters of Alaska: ecological syntheses. Edited by Milner, A.M. and Oswood, M.W.. Springer-Verlag, New York. pp. 331356.CrossRefGoogle Scholar
Oswood, M.W., Miller, L.K., and Irons, J.G. III,. 1991. Overwintering of freshwater benthic macroinvertebrates. In Insects at low temperature. Edited by Lee, R.E. Jr., and Denlinger, D.L.. Chapman and Hall, New York. pp. 360375.CrossRefGoogle Scholar
Paterson, C.G. 1971. Overwintering ecology of the aquatic fauna associated with the pitcher plant Sarracenia purpurea L. Canadian Journal of Zoology, 49: 14551459.CrossRefGoogle Scholar
Peterson, B., Fry, B., Deegan, L., and Hershey, A. 1993. The trophic significance of epilithic algal production in a fertilized tundra river ecosystem. Limnology and Oceanography, 38: 872878.CrossRefGoogle Scholar
Power, G., Cunjak, R., Flanagan, J., and Katopodis, C. 1993. Biological effects of river ice. In Environmental aspects of river ice. Chapter 4. Edited by Prowse, T.D. and Gridley, N.C.. National Hydrology Research Institute, Saskatoon, Saskatchewan. pp. 97119.Google Scholar
Pritchard, G., Harder, L.D., and Mutch, R.A. 1996. Development of aquatic insect eggs in relation to temperature and strategies for dealing with different thermal environments. Biological Journal of the Linnean Society, 58: 221244.CrossRefGoogle Scholar
Prowse, T.D. 1994. Environmental significance of ice to streamflow in cold regions. Freshwater Biology, 32: 241259.CrossRefGoogle Scholar
Prowse, T.D., and Carter, T. 2002. Significance of ice-induced storage to spring runoff: a case study of the Mackenzie River. Hydrological Processes, 16: 779788.CrossRefGoogle Scholar
Prowse, T.D., and Culp, J.M. 2003. Ice breakup: a neglected factor in river ecology. Canadian Journal of Civil Engineering, 30: 128144.CrossRefGoogle Scholar
Ramløv, H. 2000. Aspects of natural cold tolerance in ectothermic animals. Human Reproduction, 15: 646.Google ScholarPubMed
Reid, R.A., Schindler, D.W., and Schmidt, R.V. 1975. Light measurements in the Experimental Lakes Area, 1969–1973. Technical Report 559, Canadian Fisheries and Marine Service. 167 pp.Google Scholar
Ring, R.A., and Danks, H.V. 1994. Desiccation and cryoprotection: overlapping adaptations. Cryo-Letters, 15: 181190.Google Scholar
Robinson, C.T., Gessner, M.O., and Ward, J.V. 1998. Leaf breakdown and associated macroinvertebrates in alpine glacial streams. Freshwater Biology, 40: 215228.CrossRefGoogle Scholar
Robinson, C.T., Uehlinger, U., and Hieber, M. 2001. Spatio-temporal variation in macroinvertebrate assemblages of glacial streams in the Swiss Alps. Freshwater Biology, 46: 16631672.CrossRefGoogle Scholar
Sæther, O.A., and Willassen, E. 1987. Four new species of Diamesa Meigen, 1835 (Diptera: Chironomidae) from the glaciers of Nepal. Entomologica Scandinavica Supplementum, 29: 189203.Google Scholar
Sahlberg, J. 1988. Modelling the thermal regime of a lake during the winter season. Cold Regions Science and Technology, 15: 151159.CrossRefGoogle Scholar
Sandberg, J.B., and Stewart, K.W. 2004. Capacity for extended egg diapause in six Isogenoides Klapalek species (Plecoptera: Perlodidae). Transactions of the American Entomological Society, 130: 411423.Google Scholar
Sawchyn, W.W., and Gillott, C. 1974 a. The life history of Lestes congener (Odonata: Zygoptera) on the Canadian prairies. The Canadian Entomologist, 106: 367376.CrossRefGoogle Scholar
Sawchyn, W.W., and Gillott, C. 1974 b. The life histories of three species of Lestes (Odonata: Zygoptera) in Saskatchewan. The Canadian Entomologist, 106: 12831293.CrossRefGoogle Scholar
Sawchyn, W.W., and Gillott, C. 1975. The biology of two related species of coenagrionid dragonflies (Odonata: Zygoptera) in western Canada. The Canadian Entomologist, 107: 119128.CrossRefGoogle Scholar
Schindler, D.W. 1972. Production of phytoplankton and zooplankton in Canadian Shield lakes. In Productivity problems of freshwaters. Edited by Kajak, Z. and Hillbrich-Ilikowska, A.. PWN [Polish Scientific Publishers], Krakow. pp. 311331.Google Scholar
Scholander, P.F., Flagg, W., Hock, R.J., and Irving, L. 1953. Studies on the physiology of frozen plants and animals in the arctic. Journal of Cellular and Comparative Physiology, 42(Suppl. 1): 156.CrossRefGoogle ScholarPubMed
Schütz, C., Wallinger, M., Burger, R., and Füreder, L. 2001. Effects of snow cover on the benthic fauna in a glacier-fed stream. Freshwater Biology, 46: 16911704.CrossRefGoogle Scholar
Scrimgeour, G.J., Prowse, T.D., Culp, J.M., and Chambers, P.A. 1994. Ecological effects of river ice break-up: a review and perspective. Freshwater Biology, 32: 261275.CrossRefGoogle Scholar
Sformo, T., and Doak, P. 2006. Thermal ecology of interior Alaska dragonflies (Odonata: Anisoptera). Functional Ecology, 20: 114123.CrossRefGoogle Scholar
Shama, L.N.S., and Robinson, C.T. 2006. Sex-specific life-history responses to seasonal time constraints in an alpine caddisfly. Evolutionary Ecology Research, 8: 169180.Google Scholar
Shen, H.T. 2003. Research on river ice processes: progress and missing links. Journal of Cold Regions Engineering, 17: 135142.CrossRefGoogle Scholar
Smidt, S., and Oswood, M.W. 2002. Landscape patterns and stream reaches in the Alaskan taiga forest: potential roles of permafrost in differentiating macroinvertebrate communities. Hydrobiologia, 468: 95105.CrossRefGoogle Scholar
Snyder, C.D., Young, J.A., Lemarie, D.P., and Smith, D.R. 2002. Influence of eastern hemlock (Tsuga canadensis) forests on aquatic invertebrate assemblages in headwater streams. Canadian Journal of Fisheries and Aquatic Sciences, 59: 262275.CrossRefGoogle Scholar
Söderström, O., and Nilsson, A.N. 1987. Do nymphs of Parameletus chelifer and P. minor (Ephemeroptera) reduce mortality from predation by occupying temporary habitats? Oecologia, 74: 3946.CrossRefGoogle ScholarPubMed
Solem, J.O. 1983. Identification of the Norwegian larvae of the genus Potomophylax Wallengren, 1891 (Trichoptera, Limnephilidae), with data on life histories, habitats and food in the Kongsvoll area, Dovrefjell mountains, central Norway. Fauna Norvegica Series B, 30: 6976.Google Scholar
Solem, J.O. 1985. Norwegian Apatania Kolenati (Trichoptera: Limnephilidae): identification of larvae and aspects of their biology in a high-altitude zone. Entomologica Scandinavica, 16: 161174.CrossRefGoogle Scholar
Spence, J.R., and Andersen, N.M. 1994. Biology of water striders: interactions between systematics and ecology. Annual Review of Entomology, 39: 101128.CrossRefGoogle Scholar
Stewart, K.W., and Ricker, W.E. 1997. Stoneflies (Plecoptera) of the Yukon. In Insects of the Yukon. Edited by Danks, H.V. and Downes, J.A.. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario. pp. 201222.Google Scholar
Storey, K.B., and Storey, J.M. 1992. Biochemical adaptations for winter survival in insects. Advances in Low-temperature Biology, 1: 101140.Google Scholar
Svensson, B.W. 2005. Seasonal fat content fluctuations in a gyrinid beetle: comparison between an arctic and a temperate zone population (Coleoptera: Gyrinidae). Aquatic Insects, 27: 1119.CrossRefGoogle Scholar
Tate, A.W., and Hershey, A.E. 2003. Selective feeding by larval dytiscids (Coleoptera: Dytiscidae) and effects of fish predation on upper littoral zone macroinvertebrate communities of arctic lakes. Hydrobiologia, 497: 1323.CrossRefGoogle Scholar
Taylor, B.W., Anderson, C.R., and Peckarsky, B.L. 1999. Delayed egg hatching and semivoltinism in the nearctic stonefly Megarcys signata (Plecoptera: Perlodidae). Aquatic Insects, 21: 179185.CrossRefGoogle Scholar
Tonn, W.M., Langlois, P.W., Prepas, E.E., Danylchuk, A.J., and Boss, S.M. 2004. Winterkill cascade: indirect effects of a natural disturbance on littoral macroinvertebrates in boreal lakes. Journal of the North American Benthological Society, 23: 237250.2.0.CO;2>CrossRefGoogle Scholar
Townsend, G.D., and Pritchard, G. 1998. Larval growth and development of the stonefly Pteronarcys californica (Insecta: Plecoptera) in the Crowsnest River, Alberta. Canadian Journal of Zoology, 76: 22742280.CrossRefGoogle Scholar
Townsend, G.D., and Pritchard, G. 2000. Egg development in the stonefly Pteronarcys californica Newport (Plecoptera: Pteronarcyidae). Aquatic Insects, 22: 1926.CrossRefGoogle Scholar
Tozer, W.E., Resh, V.H., and Solem, J.O. 1981. Bionomics and adult behavior of a lentic caddisfly, Nectopsyche albida (Walker). American Midland Naturalist, 106: 133144.CrossRefGoogle Scholar
Ulfstrand, S. 1967. Microdistribution of benthic species (Ephemeroptera, Plecoptera, Trichoptera, Diptera: Simuliidae) in Lapland streams. Oikos, 18: 293310.CrossRefGoogle Scholar
Ulfstrand, S. 1968. Life cycles of benthic insects in Lapland streams (Ephemeroptera, Plecoptera, Trichoptera, Diptera Simuliidae). Oikos, 19: 167190.CrossRefGoogle Scholar
Ulfstrand, S. 1969. Ephemeroptera and Plecoptera from River Vindel ven in Swedish Lapland. Entomologisk Tidskrift, 90: 145165.Google Scholar
Vali, G. 1995. Principles of ice nucleation. In Biological ice nucleation and its applications. Edited by Lee, R.E. Jr., Warren, G.J., and Gusta, L.V.. American Phytopathological Society, St. Paul, Minnesota. pp. 128.Google Scholar
Van Doorslaer, W., and Stoks, R. 2005. Thermal reaction norms in two Coenagrion damselfly species: contrasting embryonic and larval life-history traits. Freshwater Biology, 50: 19821990.CrossRefGoogle Scholar
Vinson, M.R., and Hawkins, C.P. 2003. Broad-scale geographical patterns in local stream insect genera richness. Ecography, 26: 751767.CrossRefGoogle Scholar
Voelz, N.J., and McArthur, J.V. 2000. An exploration of factors influencing lotic insect species richness. Biodiversity and Conservation, 9: 15431570.CrossRefGoogle Scholar
Wang, L., and Duman, J.G. 2005. Antifreeze proteins of the beetle Dendroides canadensis enhance one another's activities. Biochemistry, 44: 1030510312.CrossRefGoogle ScholarPubMed
Ward, J.V. 1994. Ecology of alpine streams. Freshwater Biology, 32: 277294.CrossRefGoogle Scholar
Wiggins, G.B. 1973. A contribution to the biology of caddisflies (Trichoptera) in temporary pools. Life Sciences Contributions, Royal Ontario Museum, 88: 128.Google Scholar
Wiggins, G.B., and Parker, C.R. 1997. Caddisflies (Trichoptera) of the Yukon, with analysis of the Beringian and Holarctic species of North America. In Insects of the Yukon. Edited by Danks, H.V. and Downes, J.A.. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario. pp. 787866.Google Scholar
Wiggins, G.B., and Winchester, N.N. 1984. A remarkable new caddisfly genus from northwestern North America (Trichoptera, Limnephilidae, Limnephilinae). Canadian Journal of Zoology, 62: 18531858.CrossRefGoogle Scholar
Wiggins, G.B., Mackay, R.J., and Smith, I.M. 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Archiv für Hydrobiologie Supplementum, 58: 97206.Google Scholar
Winchester, N.N., Wiggins, G.B., and Ring, R.A. 1993. The immature stages and biology of the unusual North American arctic caddisfly Sphagnophylax meiops, with consideration of the phyletic relationships of the genus (Trichoptera: Limnephilidae). Canadian Journal of Zoology, 71: 12121220.CrossRefGoogle Scholar
Wise, E.J. 1980. Seasonal distribution and life histories of Ephemeroptera in a Northumbrian River. Freshwater Biology, 10: 101111.CrossRefGoogle Scholar
Wodsedalek, J.E. 1912. Natural history and general behavior of the Ephemeridae nymphs, Heptagenia interpunctata (Say). Annals of the Entomological Society of America, 5: 3140.CrossRefGoogle Scholar
Zachariassen, K.E., and Husby, J.A. 1982. Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature (London), 298: 865867.CrossRefGoogle Scholar
Zachariassen, K.E., Kristiansen, E., Pedersen, S.A., and Hammel, H.T. 2004. Ice nucleation in solutions and freeze-avoiding insects — homogeneous or heterogeneous? Cryobiology, 48: 309321.CrossRefGoogle ScholarPubMed
Zettel, J. 2000. Alpine Collembola: adaptations and strategies for survival in harsh environments. Zoology, 102: 7389.Google Scholar
Zwick, P. 1996. Variable egg development of Dinocras spp. (Plecoptera, Perlidae) and the stonefly seed bank theory. Freshwater Biology, 35: 81100.CrossRefGoogle Scholar
Zwick, P., and Teslenko, V.A. 2002. Development and life history of Far Eastern Russian Pteronarcys spp. (Plecoptera, Pteronarcyidae). Archiv für Hydrobiologie, 153: 503528.CrossRefGoogle Scholar