Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T19:03:59.078Z Has data issue: false hasContentIssue false

HOST SPECIFICITY IN PISSODES STROBI (COLEOPTERA: CURCULIONIDAE): ROLES OF GEOGRAPHY, GENETICS, AND BEHAVIOR

Published online by Cambridge University Press:  31 May 2012

Thomas W. Phillips*
Affiliation:
Department of Entomology and Plant Pathology, 127 Noble Research Center, Oklahoma State University, Stillwater, Oklahoma, United States 74078
Gerald N. Lanier
Affiliation:
Faculty of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, New York, United States 13210
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

Host specificity of Pissodes strobi (Peck) from different geographic regions and genetic divergence of local host-associated weevil populations were studied in a series of experiments. Pacific coast P. strobi reared from Sitka spruce, Picea sitchensis (Bong.) Carr (Pinaceae), were unable to successfully colonize either eastern white pine, Pinus strobus L. (Pinaceae), or western white pine, Pinus monticola Dougl. ex D. Don., in a forced-infestation study on interplanted trees in New York. Reproductively mature field-collected P. strobi from British Columbia did not oviposit on eastern white pine in New York, but field-collected New York weevils successfully reproduced in Sitka spruce leaders in British Columbia. Unacceptability of eastern white pine for western P. strobi was shown to be under genetic control, rather than influenced by prior host experience on Sitka spruce. Pissodes strobi originating from Sitka spruce but reared one generation in the laboratory on the exotic Norway spruce, Picea abies (L.) Karst., were also unable to utilize eastern white pine as a host in a forced-infestation experiment in the field. Population genetic studies using allozyme electrophoresis found that P. strobi populations occurring on different host species within 2 km of each other had significant differences in allele frequencies in three out of four cases. These results suggest that P. strobi can exist as small breeding populations that can facilitate host specialization. Applied research on host resistance against P. strobi could target mechanisms that prevent western P. strobi from utilizing nonhosts such as eastern and western white pines.

Résumé

La spécificité d’hôte chez Pissodes strobi (Peck) en différentes régions géographiques, et la divergence génétique des populations de charançons associées aux hôtes ont été étudiées au cours d’une série d’expériences. Des P. strobi de la côte ouest, élevés sur des épinettes de Sitka [Picea sichensis (Bong.) Carr (Pinaceae)] se sont avérés incapables de coloniser des Pins blancs [Pinus strobus L. (Pinaceae)] de l’est ou des pins blancs (Pinus monticola Dougl. ex D. Don) de l’ouest dans le cadre de l’étude d’une infestation forcée sur des arbres plantés en alternance dans le New York. Les insectes capturés sur le terrain en Colombie-Britannique et capables de se reproduire n’ont pas pondu sur les pins blancs du New York, mais des charançons capturés dans le New York se sont reproduits avec succès sur les branches apicales d’épinettes de Sitka de Colombie-Britannique. L’incapacité des pins blancs de l’est de permettre la reproduction des P. strobi s’est avérée sous contrôle génétique plutôt que sous l’influence d’une expérience préalable de l’hôte sur l’épinette de Sitka. Des P. strobi provenant d’épinettes de Sitka mais gardés pendant une génération en laboratoire sur l’épinette de Norvège, Picea abies (L.) Karst, se sont également révélés incapables de se reproduire sur des pins blancs lors d’une infestation forcée sur le terrain. Des études génétiques de population basées sur l’électrophorèse des allozymes ont démontré que les populations de P. strobi qui utilisent des hôtes différents à moins de 2 km l’une de l’autre ont des différences significatives dans la fréquence de leurs alleles dans trois cas sur quatre. Ces résultats indiquent que les charançons P. strobi peuvent former de petites populations reproductrices, facilitant ainsi la spécialisation des hôtes. Une recherche appliquée sur la résistance de l’hôte contre P. strobi pourrait mettre en lumière les mécanismes qui empêchent les charançons de l’ouest d’utiliser des non-hôtes comme les pins blancs dans l’est et dans l’ouest.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, R.I. 1996. Feeding and oviposition preferences of white pine weevil (Coleoptera: Curculionidae) on resistant and susceptible Sitka spruce clones in laboratory bioassays. Environmental Entomology 25: 1012–19CrossRefGoogle Scholar
Alfaro, R.I., Borden, J.H. 1982. Host selection by the white pine weevil, Pissodes strobi Peck: feeding bioassays using host and non-host plants. Canadian Journal of Forest Research 12: 6470CrossRefGoogle Scholar
Alfaro, R.I., Pierce, H.D. Jr, Borden, J.H., Oehlschager, A.C. 1979. A quantitative feeding bioassay for Pissodes strobi Peck (Coleoptera: Curculionidae). Journal of Chemical Ecology 5: 663–71CrossRefGoogle Scholar
Alstad, D.N., Edmunds, G.F. 1983. Selection, outbreeding depression, and the sex ratio of scale insects. Science (Washington, DC) 220: 93–5CrossRefGoogle ScholarPubMed
Baker, W.L. 1972. Eastern forest insects. US Department of Agriculture Forest Service Miscellaneous Publication 1175Google Scholar
Boyce, T.M., Zwick, M.E., Aquardo, C.F. 1994. Mitochondrial DNA in the bark weevils: phylogeny and evolution in the Pissodes strobi species group. Molecular Biology and Evolution 11: 183–94Google Scholar
Brooks, J.E., Borden, J.H. 1992. Development of a resistance index for Sitka spruce against the white pine weevil Pissodes strobi Peck (Coleoptera: Curculionidae). Canadian Forestry Service Pacific Forestry Centre FRDA Report 180Google Scholar
Furniss, R.L., Carolin, V.M. 1977. Western forest insects. US Department of Agriculture Forest Service Miscellaneous Publication 1339Google Scholar
Harman, D.M. 1975. Movement of individually marked white pine weevils, Pissodes strobi. Environmental Entomology 4: 120–4CrossRefGoogle Scholar
Hopkins, A.D. 1911. Contributions toward a monograph of the bark-weevils of the genus Pissodes. US Department of Agriculture Entomology Bulletin 20 (Tech Ser) Part 1Google Scholar
Jaenicke, J. 1981. Criteria for ascertaining the existence of host races. American Naturalist 117: 830–4CrossRefGoogle Scholar
Langor, D.W., Sperling, F.A.H. 1995. Mitochondrial DNA variation and identification of bark weevils in the Pissodes strobi species group in western Canada (Coleoptera: Cuculionidae). The Canadian Entomologist 127: 895911CrossRefGoogle Scholar
Langor, D.W., Sperling, F.A.H. 1997. Mitochondrial DNA sequence divergence in weevils of the Pissodes strobi species complex (Coleoptera: Curculionidae). Insect Molecular Biology 6: 255–65CrossRefGoogle ScholarPubMed
Lewis, K.G. 1995. Genetic variation among populations of Pissodes strobi (white pine weevil) reared from Picea and Pinus hosts as inferred from RAPD markers. M.Sc. thesis, University of British Columbia, Vancouver, British ColumbiaGoogle Scholar
Lewis, K.G., Carlson, J.E., McLean, J.A. 1994. Using RAPD markers to investigate genetic diversity of the white pine weevil (Pissodes strobi). pp. 184202in Alfaro, R.I., Kiss, G., Fraser, R.G. (Eds), The White Pine Weevil: Biology, Damage and Management, Proceedings, Richmond, British Columbia. Canadian Forestry Service and British Columbia Ministry of Forests FRDA Report 226Google Scholar
Manna, G.K., Smith, S.G. 1959. Chromosomal polymorphism and inter-relationships among bark weevils of the genus Pissodes Germar. The Nucleus II: 179208Google Scholar
McIntosh, R. 1997. Biology and behaviour of the white pine weevil Pissodes strobi (Peck) in white spruce. Ph.D. dissertation, University of British Columbia, Vancouver, British ColumbiaGoogle Scholar
McMullen, L.H., Condrashoff, S.F. 1973. Notes on dispersal, longevity and overwintering of adult Pissodes strobi (Peck) (Coleoptera: Curculionidae) on Vancouver Island. Journal of the Entomological Society of British Columbia 70: 22–6Google Scholar
Painter, R.H. 1951. Insect resistance in crop plants. New York: MacMillanCrossRefGoogle Scholar
Phillips, T.W. 1984. Ecology and systematics of Pissodes sibling species. Ph.D. dissertation, State University of New York, Syracuse, New YorkGoogle Scholar
Phillips, T.W., Lanier, G.N. 1983. White pine weevil, Pissodes strobi (Coleoptera: Curculionidae), attack on various conifers in New York. The Canadian Entomologist 115: 1637–9CrossRefGoogle Scholar
Phillips, T.W., Lanier, G.N. 1985. Genetic divergence among populations of the white pine weevil, Pissodes strobi (Coleoptera: Curculionidae). Annals of the Entomological Society of America 78: 744–50CrossRefGoogle Scholar
Phillips, T.W., Lanier, G.N. 1986. Interspecific activity of semiochemicals among sibling species of Pissodes (Coleoptera: Curculionidae). Journal of Chemical Ecology 12: 15871601CrossRefGoogle ScholarPubMed
Sahota, T.S., Manville, J.F., Peet, F.G., White, E.E., Ibaraki, A.I., Nault, J.R. 1998 a. Resistance against white pine weevil: effects on weevil reproduction and host finding. The Canadian Entomologist 130: 337–47CrossRefGoogle Scholar
Sahota, T.S., Manville, J.F., Peet, F.G., Ibaraki, A.I., White, E.E. 1998 b. Weevil physiology controls the feeding rates of Pissodes strobi on Picea sitchensis. The Canadian Entomologist 130: 305–14CrossRefGoogle Scholar
SAS Institute Inc. 1996. SAS/STAT guide for personal computers, release 6.12 edition. Cary: SAS Institute Inc.Google Scholar
Soles, R.L., Gerhold, H.D., Palplant, H.E. 1970. Resistance of western white pine to white pine weevil. Journal of Forestry 68: 766–8Google Scholar
Smith, S.G., Sugden, B.A. 1969. Host trees and breeding sites of native North American Pissodes bark weevils, with a note on synonymy. Annals of the Entomological Society of America 62: 146–8CrossRefGoogle Scholar
Swofford, D.L., Selander, R.B. 1981. BIOSYS-1, a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. Journal of Heredity 72: 281–3CrossRefGoogle Scholar
Sturgeon, K.B., Mitton, J.B. 1982. Evolution of bark beetle communities. pp. 350–84 in Mitton, J.B., Sturgeon, K.B. (Eds), Bark beetles in North American conifers—a system for the study of evolutionary biology. Austin: University of Texas PressGoogle Scholar
Tomlin, E.S., Borden, J.H. 1994 a. Relationship between leader morphology and resistance or susceptibility of Sitka spruce to the white pine weevil. Canadian Journal of Forest Research 24: 810–6CrossRefGoogle Scholar
Tomlin, E.S., Borden, J.H. 1994 b. Development of a multicomponent resistance index for Sitka spruce resistant to the white pine weevil. pp. 117–33 in Alfaro, R.I., Kiss, G., Fraser, R.G. (Eds), The White Pine Weevil: Biology, Damage and Management, Proceedings, Richmond, British Columbia. Canadian Forestry Service and British Columbia Ministry of Forests FRDA Report 226Google Scholar
VanderSar, T.J.D. 1978. Resistance of western white pine to feeding and oviposition of Pissodes strobi Peck in western Canada. Journal of Chemical Ecology 4: 641–7CrossRefGoogle Scholar
VanderSar, T.J.D., Borden, J.H., McLean, J.A. 1977. Host preference of Pissodes strobi Peck (Coleoptera: Curculionidae) reared from three native hosts. Journal of Chemical Ecology 3: 322–39CrossRefGoogle Scholar
Wright, S. 1978. Evolution and the genetics of populations. Vol. 4. Variability within and among natural populations. Chicago: University of Chicago PressGoogle Scholar
Ying, C.C. 1991. Genetic resistance to the white pine weevil in Sitka spruce. BC Ministry of Forests Research Note 106Google Scholar