Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T13:06:44.389Z Has data issue: false hasContentIssue false

HOST EFFECTS ON THE PHENOLOGY, DEVELOPMENT, AND MORTALITY OF FIELD POPULATIONS OF THE MOUNTAIN PINE BEETLE, DENDROCTONUS PONDEROSAE HOPKINS (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

David W. Langor
Affiliation:
Department of Entomology, University of Alberta, Edmonton, Alberta, Canada T6G 2E3

Abstract

Phenology, fecundity, development, and mortality were studied for co-occurring, declining populations of Dendroctonus ponderosae Hopkins in limber pine and lodgepole pine at two sites in the Porcupine Hills of southwestern Alberta in 1985–1986. Beetles reared in lodgepole pine emerged and attacked new hosts 7–8 days earlier than those in limber pine in 1985. Beetles were able to utilize over two-thirds of the length of each limber pine bole but only about one-third of the length of each lodgepole pine bole. Also, beetles infesting limber pine had significantly higher fecundity, produced more eggs per centimetre of gallery length, and their progeny developed faster and survived better than beetles infesting lodgepole pine. There was no apparent phenological or other barrier that might inhibit gene flow between D. ponderosae populations in limber pine and lodgepole pine. In the area studied, limber pine was a better host for D. ponderosae reproduction, development, and survival than was lodgepole pine. Thus, beetle populations may be able to increase much more quickly in limber pine, arguing for regular monitoring of these populations.

Résumé

On a étudié la phénologie, la fécondité, le développement et la mortalité de deux populations coexistantes en déclin de Dendroctonus ponderosae Hopkins sur le pin souple et le pin lodgepole de deux localités des Monts Porcupine au sud-ouest de l’Alberta en 1985–1986. Les dendroctones obtenus du pin lodgepole ont émergé et attaqué de nouveaux hôtes 7–8 jours plus tôt que ceux obtenus du pin souple en 1985. Les insectes ont pu utiliser plus des deux tiers de la longueur des bûches du pin souple mais un tiers seulement des bûches du pin lodgepole. De plus les insectes provenant du pin souple avaient une fécondité plus élevée et ont déposé plus d’oeufs par centimetre de galerie; et leurs progénitures se sont développées plus vite et étaient plus viables que celles des individus élevés sur pin lodgepole. Il n’y a apparemment aucune barrière phénologique ou autre pouvant limiter l’échange de gènes entre les populations du dendroctone issues des deux espèces de pin. Dans la région d’étude, le pin souple s’est avéré un hôte supérieur pour la reproduction, le développement et la survie de D. ponderosae, au pin lodgepole. Ainsi, les populations de l’insecte auront tendance à augmenter beaucoup plus vite sur le pin souple et devraient donc être dépistées régulièrement.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberta Forestry, Lands and Wildlife. 1986. Mountain pine beetle control program 1980–86: a success story. Publ. No. I/143, Alberta For., Lands Wildl., Edmonton, Alta. 12 pp.Google Scholar
Amman, G.D. 1973. Population changes of the mountain pine beetle in relation to elevation. Environ. Ent. 2: 541547.CrossRefGoogle Scholar
Amman, G.D. 1982. Characteristics of mountain pine beetles reared in four pine hosts. Environ. Ent. 11: 590593.CrossRefGoogle Scholar
Amman, G.D., and Cole, W.E.. 1983. Mountain pine beetle dynamics in lodgepole pine forests part II: population dynamics. Gen. Tech. Rep. INT-145. U.S.D.A. For. Serv., Intermountain For. Range Exp. Stn., Ogden, UT. 59 pp.Google Scholar
Amman, G.D., and Pasek, J.E.. 1986. Mountain pine beetle in ponderosa pine: effects of phloem thickness and egg gallery density. Res. Pap. INT-367. U.S.D.A. For. Serv., Intermountain Res. Stn., Ogden, UT. 7 pp.Google Scholar
Baker, B.H., Amman, G.D., and Trostle, G.C.. 1971. Does the mountain pine beetle change hosts in mixed lodgepole and whitebark pine stands? Res. Note INT-151. U.S.D.A. For. Serv., Intermountain For. Range. Exp. Stn., Ogden, UT. 3 pp.Google Scholar
Billings, R.F., and Gara, R.I.. 1975. Rhythmic emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae) from two host species. Ann. ent. Soc. Am. 68: 10331036.CrossRefGoogle Scholar
Bush, G.L. 1969. Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 23: 237251.CrossRefGoogle Scholar
Furniss, M.M., and Schenk, J.A.. 1969. Sustained natural infestations by the mountain pine beetle in seven new Pinus and Picea hosts. J. econ. Ent. 62: 518519.CrossRefGoogle Scholar
Knight, F.B. 1959. Partial life tables for the Black Hills beetle. J. econ. Ent. 52: 11991202.CrossRefGoogle Scholar
Langor, D. W. 1989. Host effects on the population genetics and dynamics of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), in Alberta. Ph.D. thesis, University of Alberta, Edmonton, Alta.CrossRefGoogle Scholar
Lanier, G.N., and Burkholder, W.E.. 1974. Pheromones in speciation of Coleoptera. pp. 161189in Birch, M.C. (Ed.), Pheromones. North Holland Publ., Amsterdam.Google Scholar
Lyon, R.L. 1958. A useful secondary sex character in Dendroctonus bark beetles. Can. Ent. 90: 582584.CrossRefGoogle Scholar
McCambridge, W.F. 1975. Scotch pine and mountain pine beetles. Green Thumb 32: 87.Google Scholar
McClellend, W.T., Hain, F.P., Demars, C.J., Fargo, W.S., Coulson, R.N., and Nebeker, T.E.. 1978. Sampling bark beetle emergence: a review of methodologies, a proposal for standardization and a new trap design. Ent. Soc. Am. Bull. 24(2): 137140.Google Scholar
Mitter, C., Futuyma, D.J., Schneider, J.C., and Hare, J.D.. 1979. Genetic variation and host plant relations in a parthenogenic moth. Evolution 33: 777790.CrossRefGoogle Scholar
Mirov, N.T. 1961. Composition of gum turpentines of pine. U.S.D.A. For. Serv. Tech. Bull. 1239.Google Scholar
Phillips, P.A., and Barnes, M.M.. 1975. Host race formation among sympatric apple, walnut and plum populations of the codling moth, Laspeyresia pomonella. Ann. ent. Soc. Am. 68: 10531060.CrossRefGoogle Scholar
Powell, J.M. 1967. A study of habitat temperatures of the bark beetle, Dendroctonus ponderosae Hopkins, in lodgepole pine. Agric. Meteorol. 4: 189201.CrossRefGoogle Scholar
Reid, R.W. 1962 a. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the east Kootenay region of British Columbia. I. Life cycle, brood development, and flight periods. Can. Ent. 94: 531538.CrossRefGoogle Scholar
Reid, R.W. 1962 b. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the east Kootenay region of British Columbia. II. Behaviour in the host, fecundity, and internal changes in the female. Can. Ent. 94: 605613.CrossRefGoogle Scholar
Reid, R.W. 1963. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the east Kootenay region of British Columbia. III. Interaction between the beetle and its host, with emphasis on brood mortality and survival. Can. Ent. 95: 225238.CrossRefGoogle Scholar
Richmond, H.A. 1933. Host selection studies of Dendroctonus monticolae Hopkins in southern British Columbia. For. Chron. 9: 6061.CrossRefGoogle Scholar
Ryan, B.F., Joiner, B.L., and Ryan, T.A. Jr., 1985. Minitab Handbook, 2nd ed. Duxbury Press, Boston. 379 pp.Google Scholar
Safranyik, L., and Jahren, R.. 1970. Host characteristics, brood density and size of mountain pine beetle. Can. For. Serv. Bimonth. Res. Notes 26: 3536.Google Scholar
Safranyik, L., and Linton, D.A.. 1982. Survival and development of mountain pine beetle broods in jack pine bolts from Ontario. Can. For. Serv. Res. Notes 2: 1718.Google Scholar
Safranyik, L., and Linton, D.A.. 1983. Brood production by three species of Dendroctonus (Coleoptera: Scolytidae) in bolts from host and non-host trees. J. ent. Soc. British Columbia 80: 1013.Google Scholar
Schmid, J.M. 1972. Emergence, attack densities and seasonal trends of mountain pine beetle (Dendroctonus ponderosae) in the Black Hills. Res. Note RM-21. U.S.D.A. For. Serv., Rocky Mtn. For. Range Exp. Stn., Fort Collins, CO. 4 pp.Google Scholar
Smith, G.J. 1984. Mountain pine beetle surveillance and studies in the Bow/Crow Forest, final report — Oct. 31, 1984. Alberta Forestry, Lands and Wildlife, Calgary, Alta. 27 pp. [Unpublished.]Google Scholar
Smith, R.H., Cramer, J.P., and Carpender, E.J.. 1981. New record of introduced hosts for the mountain pine beetle in California. Res. Note PSW-354. U.S.D.A. For. Serv., Pacific Southwest For. Range Exp. Stn., Berkeley, CA. 3 pp.Google Scholar
Sômme, L. 1964. Effects of glycerol on cold-hardiness in insects. Can. J. Zool. 42: 87101.CrossRefGoogle Scholar
Strong, D.R., Lawton, J.H., and Southwood, T.R.E.. 1984. Insects on Plants: Community Patterns and Mechanisms. Harvard University Press, Cambridge, MA. 313 pp.Google Scholar
Sturgeon, K.B., and Mitton, J.B.. 1982. Evolution of bark beetle communities. pp. 350–384 in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark Beetles in North American Conifers: a System for the Study of Evolutionary Biology. University of Texas Press, Austin. 527 pp.Google Scholar
Wood, S.L. 1982. The Bark and Ambrosia Beetles of North and Central America (Coleoptera: Scolytidae), a Taxonomic Monograph. Great Basin Naturalist Memoirs No. 6, Brigham Young University, Provo, UT. 1359 pp.Google Scholar
Wood, T.K. 1980. Divergence in the Enchenopa binotata Say complex (Homoptera: Membracidae) effected by host plant adaptation. Evolution 34: 147160.CrossRefGoogle ScholarPubMed