Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T18:00:10.689Z Has data issue: false hasContentIssue false

HISTORICAL CHANGES IN INSECT COMMUNITY STRUCTURE AS INDICATED BY HEXAPODS OF UPPER CRETACEOUS ALBERTA (GRASSY LAKE) AMBER

Published online by Cambridge University Press:  31 May 2012

Edward M. Pike
Affiliation:
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Abstract

Species richness and relative abundance of arthropod taxa from an Upper Cretaceous (Campanian: 75 Mya) amber deposit in Alberta are described. About 130 hexapod species have been recognized to date from this deposit, making it the most diverse Cretaceous insect assemblage so far known. Taxa present, in order of abundance, are Hemiptera (66 specimens per kg), Diptera (28), Acari (21), Hymenoptera (13), Aranaea (12), Psocoptera (4), Coleoptera (2), Blattodea (1), Thysanoptera (1), and Trichoptera (0.6). Representatives of Lepidoptera, Collembola, Dermaptera, Mantodea, Phasmatodea, and Ephemeropteraare are also present. In the total of 65 identified families, 15 are extinct. Only one of about 77 genera identified in this deposit is extant. All recognized species are extinct. In comparison, virtually all families reported from Baltic and Dominican Republic ambers are extant, as are the majority of the genera. Morphology and feeding structures are well within the variation seen in modern insects. It is hypothesized that the taxonomic structure of modern insect communities was well established before the end of the Cretaceous and that the structure and interrelationships of insect guilds were also very similar to those of today.

Résumé

La richesse en espèces et l’abondance relative des taxons d’arthropodes trouvés dans les dépots d’ambre du Crétacé supérieur (Campanien : il y a 75 millions d’années) en Alberta font l’objet de cette étude. Environ 130 espèces d’hexapodes ont été reconnues dans ces dépôts, ce qui représente l’association d’insectes la plus diversifiée jamais trouvée pour cette période. Les taxons présents, par ordre d’importance, sont les Hémiptères (66 spécimens/kg), les Diptères (28), les Acariens (21), les Hyménoptères (13), les Aranaea (12), les Psocoptères (4), les Coléoptères (2), les Blattodea (1), les Thysanoptères (1), les Trichoptères (0,6). Des représentants des groupes suivants sont également présents : Lépidoptères, Collemboles, Dermaptères, Mantodea, Phasmatodea, et Éphéméroptères. Parmi les 65 familles reconnues, 15 sont aujourd’hui disparues. Un seul des 77 genres identifiés existe encore. Toutes les espèces reconnues sont disparues. Par comparaison, il faut dire que presque toutes les familles rencontrées dans l’ambre de la Baltique ou de la République dominicaine sont encore existantes, de même que la majorité des genres. Les variations dans la morphologie et les structures reliées à l’alimentation correspondent à la variation observée chez les insectes modernes. Nous croyons que la structure taxonomique des communautés d’insectes modernes était déja établie avant la fin du Crétacé et que la structure et les relations entre les guildes d’insectes étaient à cette époque très semblables à celles qui prévalent aujourd’hui.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carroll, R.L. 1988. Vertebrate Paleontology and Evolution. W.H. Freeman and Co., New York, NY. 698 pp.Google Scholar
Donaghue, M.J., Doyle, J.A., Gauthier, J., Kluge, A.G., and Rowe, T.. 1989. The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics 29: 431460.CrossRefGoogle Scholar
Folinsbee, R.E., Baadsgaard, G., Cumming, G.L., and Nascombe, J.. 1964. Radiometric dating of the Bearpaw Sea. Bulletin of the American Association of Petroleum Geology 48: 525.Google Scholar
Grimaldi, D.A. (Ed.). 1990. Insects from the Santana Formation, Lower Cretaceous, of Brazil. Bulletin of the American Museum of Natural History 195: 191 pp.Google Scholar
Grimaldi, D.A. 1991. Mycetobiine Woodgnats (Diptera: Anisopodidae) from the Oligo-Miocene Amber of the Dominical Republic, and Old World Affinities. American Museum Novitates 3014: 24 pp.Google Scholar
Grimaldi, D.A. 1992. Vicariance biogeography, geographic extinctions, and the North American Oligocene tsetse flies. pp. 178–204 in Novacek, M.J., and Wheeler, G.D. (Eds.), Extinction and Phylogeny. Columbia University Press, New York, NY. 253 pp.Google Scholar
Hamilton, K.G.A. 1992. Lower Cretaceous Homoptera from the Koonwarra fossil bed in Australia, with a new superfamily and synopsis of Mesozoic Homoptera. Annals of the Entomological Society of America 85(4): 423430.CrossRefGoogle Scholar
Heie, O.E. 1990. Recent advances in paleoaphidology. Acta Phytopathologica et Entomologica Hungarica 25: 253260.Google Scholar
Heie, O.E., and Pike, E.M.. 1992. New aphids in Cretaceous amber from Alberta (Insecta, Homoptera). The Canadian Entomologist 124: 10271053.CrossRefGoogle Scholar
Hennig, W. 1965. Die Acalypteratae des Baltischens Bernsteins. Stuttgarter Beitrage zur Naturkunde 145: 215 pp.Google Scholar
Huelsenbeck, J.P. 1991. When are fossils better than extant taxa in phylogenetic analysis? Systematic Zoology 40(4): 458469.CrossRefGoogle Scholar
Hurd, P.D. Jr., Smith, R.F., and Durham, J.W.. 1962. The fossiliferous amber of Chiapas, Mexico. Ciencia 21: 107118.Google Scholar
Jarzembowski, E.A. 1984. Early Cretaceous insects from Southern England. Modern Geology 9: 7193.Google Scholar
Jarzembowski, E.A. 1989. Cretaceous insect extinction. Mesozoic Research 2(1): 2528.Google Scholar
Jell, P.A., and Duncan, P.M.. 1986. Invertebrates, mainly insects, from the freshwater Lower Cretaceous, Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. Memoirs of the Association of Australasian Paleontologists 3: 111205.Google Scholar
Kononova, E.L. 1976. Extinct aphid families (Homoptera, Aphidinea) of the Late Cretaceous. Paleontological Journal 4: 352360.Google Scholar
Krishna, K., and Grimaldi, D.A.. 1991. A new fossil species from Dominican amber of the living australian termite genus Mastotermes (Isoptera: Mastotermitidae). American Museum Novitates 3021: 10 pp.Google Scholar
Langenheim, J.H. 1969. Amber: A botanical inquiry. Science 163: 11571169.CrossRefGoogle Scholar
Larsson, S.G. 1978. Baltic amber — A Palaeobiological Study. Entomonograph 1: 192 pp.Google Scholar
Lazarus, D.B., and Prothero, D.R.. 1984. The role of stratigraphic and morphologic data in phylogeny. Journal of Paleontology 58(1): 163172.Google Scholar
Legg, W.M. 1942. Collection, Preservation, and Statistical Study of Fossil Insects from Chemawinite. Unpublished undergraduate thesis, Princeton University, Princeton, NJ. 66 pp.Google Scholar
Maisey, J.G. 1990. Stratigraphy and depositional environment of the Crato member (Santana Formation, Lower Cretaceous of N.E. Brazil). pp. 15–19 in Grimaldi, D.A. (Ed.), Insects from the Santana Formation, Lower Cretaceous, of Brazil. Bulletin of the American Museum of Natural History 195: 191 pp.Google Scholar
McAlpine, J.F., and Martin, J.E.H.. 1966. Systematics of Sciadoceridae and relatives with descriptions of two new genera and species from Canadian amber and erection of the family Ironomyiidae (Diptera: Phoroidea). The Canadian Entomologist 98: 527544.CrossRefGoogle Scholar
McAlpine, J.F., and Martin, J.E.H.. 1969. Canadian Amber — a Paleontological treasure chest. The Canadian Entomologist 101: 819838.CrossRefGoogle Scholar
McKay, I.J., and Rayner, R.J.. 1986. Cretaceous fossil insects from Orapa, Botswana. Journal of the Entomological Society of Southern Africa 49: 717.Google Scholar
Norell, M.A., and Novacek, M.J.. 1992. The fossil record and evolution: Comparing cladistic and paleontological evidence for vertebrate history. Science 255: 16901693.CrossRefGoogle ScholarPubMed
Olsen, S.L. 1985. The fossil record of birds. pp. 79238in Farner, D., King, J., and Parkes, K. (Eds.), Avian Biology 8.CrossRefGoogle Scholar
Patterson, C. 1981. Methods of paleobiogeography. pp. 446–489 in Nelson, G., and Rosen, D.E. (Eds.), Vicariance Biogeography: A Critique. Columbia University Press, New York, NY. 593 pp.Google Scholar
Poinar, G.O. Jr., 1992. Life in Amber. Stanford University Press, Stanford, CA. 350 pp.CrossRefGoogle Scholar
Raup, D.M. 1991. Extinction. Bad Genes or Bad Luck. Norton and Co., New York, NY. 210 pp.Google ScholarPubMed
Raup, D.M., and Stanley, S.M.. 1971. Principles of Paleontology. W.H. Freeman and Co., San Francisco, CA. 388 pp.Google Scholar
Rice, P.C. 1980. Amber. The Golden Gem of the Aes. Van Nostrand Reinhold, New York, NY. 289 pp.Google Scholar
Romer, A.S. 1966. Vertebrate Paleontology. University of Chicago Press, Chicago, IL. 468 pp.Google Scholar
Schaefer, B., Hecht, M.K., and Eldredge, N.. 1972. Phylogeny and paleontology. Evolutionary Biology 6: 3146.Google Scholar
Schlee, D. 1984. Notizem uber einige Bernsteine und Kopal aus der Welt. pp. 29–62 in Schlee, D. (Ed.), Bemstein-Neuigkeiten. Stuttgarter Beitrage fur Naturkunde C 18: 100 pp.Google Scholar
Stanley, S.M. 1979. Macroevolution. Pattern and Process. W.H. Freeman and Co., San Francisco, CA. 332 pp.Google Scholar
Tatarinov, et al. , (Eds.). 1986. Insects in the Early Cretaceous Ecosystems of West Mongolia. Mockba Press (Moscow?). 214 pp. [In Russian.]Google Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and the Climates of the Earth. Translated by Litvinov, Ju. V.. Hughes, N.F. (Ed.). Cambridge University Press, Cambridge, U.K. 318 pp.Google Scholar
Whalley, P.E.S. 1987. Insects and Cretaceous mass extinction. Nature 327: 562.CrossRefGoogle Scholar
Whalley, P.E.S., and E.A., Jarzembowski. 1985. Fossil insects from the lithographic limestone of Montesch (Late Jurassic-Early Cretaceous), Lerida Province, Spain. Bulletin of the British Museum of Natural History (Geology) 38: 381412.CrossRefGoogle Scholar
Wilson, M.V.H. 1978. Evolutionary significance of North American Paleogene insect faunas. Quaestiones Entomologicae 14: 3542.Google Scholar
Zherichin, V.V. 1980. Klass Insecta. Nasekomye. pp. 40–97, 168175in Razvitie i smena bespozvonochnykh na rubezhe mesozoya i kainozoya. Mshanki', chlenistonogie i glokozhie. Moskva Akademyia nauk S.S.S.R.Google Scholar
Zherichin, V.V., and Sukatcheva, I.D.. 1973. The Cretaceous insect-bearing ambers (retinites) of northern Siberia. N. A. 24'th annual Kholodkovskiy Memorial Lectures. pp. 346.Google Scholar