Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T19:05:58.541Z Has data issue: false hasContentIssue false

Growth loss and recovery following defoliation by the balsam fir sawfly in young, spaced balsam fir stands

Published online by Cambridge University Press:  31 May 2012

Harald Piene*
Affiliation:
Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, PO Box 4000, Regent Street, Fredericton, New Brunswick, Canada E3B 5P7, and Population Ecology Group, FOREM, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6C2
Don P. Ostaff
Affiliation:
Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, PO Box 4000, Regent Street, Fredericton, New Brunswick, Canada E3B 5P7, and Population Ecology Group, FOREM, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6C2
Eldon S. Eveleigh
Affiliation:
Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, PO Box 4000, Regent Street, Fredericton, New Brunswick, Canada E3B 5P7, and Population Ecology Group, FOREM, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6C2
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

Two stands of intensively managed balsam fir [Abies balsamea (L.) Mill. (Pinaceae)] in western Newfoundland, located within an area infested by the balsam fir sawfly, Neodiprion abietis (Harr.) (Hymenoptera: Diprionidae) complex, were selected to study growth loss and recovery following severe defoliation by the balsam fir sawfly in the early 1990s. Four years after the start of the outbreak, volume increments were reduced by 78–81%. The decreased volume increment and recovery coincided well with the balsam fir sawfly outbreak and decline. The growth recovery rates following severe balsam fir sawfly defoliation were slow due to the absence of bud destruction, which triggers the release of suppressed buds, and thus increases foliage production. It is imperative that the severe losses in volume growth caused by balsam fir sawfly defoliation are incorporated into wood supply analyses so that future annual allowable cuts may be adjusted. In addition, to ensure maximum recovery rates at the end of an outbreak, future populations must be kept at a minimum to avoid additional foliage loss.

Résumé

Deux boisés de sapins baumiers [Abies balsamea (L.) Mill. (Pinaceae)] sous gestion intense, situés dans une région envahie par des Diprions du sapin du complexe, Neodiprion abietis (Harr.) (Hymenoptera : Diprionidae) dans l’ouest de l’île de Terre-Neuve, ont été choisis pour l’étude de la perte de croissance et de la récupération à la suite d’une défoliation importante due au diprion au début des années 1990. Quatre ans après le début de l’infestation, les augmentations annuelles du volume des sapins avaient baissé de 78–81%. La diminution de la croissance en volume et la récupération coïncidaient respectivement avec l’infestation et avec le déclin de la population de diprions. La vitesse du retour à la croissance normale après la forte défoliation s’est avérée lente parce qu’il n’y a pas eu destruction des bourgeons, ce qui aurait déclenché l’ouverture des bourgeons réprimés, augmentant ainsi la production de feuillage. Il est donc essentiel que les pertes importantes de croissance en volume à la suite de défoliations graves causées par les diprions soient prises en compte dans les calculs du bois d’approvisionnement, de façon à permettre l’ajustement de la gestion des coupes annuelles permises dans l’avenir. De plus, pour assurer la récupération maximale des boisés après une infestation, les populations de diprions doivent être maintenues au minimum pour éviter d’autres pertes de feuillage.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, R.I., Van Sickle, G.A., Thomson, A.J., Wegwitz, E. 1982. Tree mortality and radial growth losses caused by the western spruce budworm in a Douglas-fir stand in British Columbia. Canadian Journal of Forest Research 12: 780–7CrossRefGoogle Scholar
Alfaro, R.I., Thomson, A.J., Van Sickle, G.A. 1985. Quantification of Douglas-fir growth losses caused by western spruce budworm defoliation using stem analysis. Canadian Journal of Forest Research 15: 59Google Scholar
Austarå, ø;, Orlund, A., Svendsrud, A., Veidahl, A. 1987. Growth loss and economic consequences following two years defoliation of Pinus sylvestris by the pine sawfly, Neodiprion sertifer, in west-Norway. Scandinavian Journal of Forest Research 2: 111–9CrossRefGoogle Scholar
Batzer, H.O. 1973. Defoliation by the spruce budworm stimulates epicormic shoots on balsam fir. Environmental Entomology 2: 727–8CrossRefGoogle Scholar
Bowers, W.W., Stone, D., O'Brien, D., Sutton, W., Banfield, E., Carew, G.C., Pardy, K. 1995. Insects and diseases of regional importance–Newfoundland and Labrador. pp 30–1 in Hall, J.P. (Compiler), Forest insect and disease conditions in Canada 1993. Ottawa: Forest Insect and Disease Survey, Canadian Forest Service, Natural Resources CanadaGoogle Scholar
Brix, H. 1971. Effects of nitrogen fertilization on photosynthesis and respiration in Douglas-fir. Forest Science 17: 407–14Google Scholar
Carroll, W.J. 1962. Some aspects of the Neodiprion abietis (Harr.) complex in Newfoundland. PhD thesis, State University College of Forestry, Syracuse University, Syracuse, New YorkGoogle Scholar
Carroll, A.L., Lawlor, M.F., Quiring, D.T. 1993. Influence of feeding by Zeiraphera canadensis, the spruce bud moth, on stem-wood growth of young white spruce. Forest Ecology and Management 58: 41–9CrossRefGoogle Scholar
Clarke, F.R., Murchison, H.G. 1987. Evaluation of Holman-digimicrometer. Forestry Chronicle 63: 80–3Google Scholar
Duff, G.H., Nolan, N.J. 1953. Growth and morphogenesis in the Canadian forest species. 1. The controls of cambial and apical activity in Pinus resinosa Ait. Canadian Journal of Botany 31: 471513CrossRefGoogle Scholar
Ericsson, A., Hellqvist, C., Långström, B., Larsson, S., Tenow, O. 1985. Effects on growth of simulated and induced shoot pruning by Tomicus piniperda as related to carbohydrate and nitrogen dynamics in Scots pine. Journal of Applied Ecology 22: 105–24Google Scholar
Harrington, C.A., Reukema, D.L. 1983. Initial shock and long-term stand development following thinning in a Douglas-fir plantation. Forest Science 29: 3346Google Scholar
Honer, T.G., Ker, M.F., Alemdag, I.S. 1983. Metric timber tables for the commercial tree species of central and eastern Canada. Canadian Forestry Service Maritimes Region Information Report M–X–140Google Scholar
Jordan, G.A., Ballance, R.H. 1983. A microcomputer-based annual ring measurement system. Forestry Chronicle 59: 21–5Google Scholar
Kozlowski, T.T., Winget, C.H. 1964. The role of reserves in leaves, branches, stems, and roots on shoot growth of red pine. American Journal of Botany 51: 522–9CrossRefGoogle Scholar
Långström, B., Tenow, O., Ericsson, A., Hellqvist, C., Larsson, S. 1990. Effects of shoot pruning on stem growth, needle biomass, and dynamics of carbohydrates and nitrogen in Scots pine as related to season and tree age. Canadian Journal of Forest Research 20: 514–23Google Scholar
Meades, W.J., Moores, L. 1994. Forest site classification manual. A field guide to the Damman forest types of Newfoundland. Forest Resource Development Agreement Report 3Google Scholar
Morris, C.L., Schroeder, W.J., Knox, K.A. 1964. Growth loss in shortleaf and Virginia pines from sawfly defoliation. Journal of Forestry. 62: 500–1Google Scholar
Onaka, F. 1950. The longitudinal distribution of radial increments in trees. Bulletin of Kyoto University Forests 18Google Scholar
Ostaff, D.P., MacLean, D.A. 1995. Patterns of balsam fir foliar production and growth in relation to defoliation by spruce budworm. Canadian Journal of Forest Research 25: 1128–36Google Scholar
Piene, H. 1980. Effects of insect defoliation on growth and foliar nutrients of young balsam fir. Forest Science 26: 665–73Google Scholar
Piene, H. 1989 a. Spruce budworm defoliation and growth loss in young balsam fir: defoliation in spaced and unspaced stands and individual tree survival. Canadian Journal of Forest Research 19: 1211–7Google Scholar
Piene, H. 1989 b. Spruce budworm defoliation and growth loss in young balsam fir: recovery of growth in spaced stands. Canadian Journal of Forest Research 19: 1616–24Google Scholar
Piene, H. 1991. The sensitivity of young white spruce to spruce budworm defoliation. Northern Journal of Applied Forestry 8: 168–71Google Scholar
Piene, H., Little, C.H.A. 1990. Spruce budworm defoliation and growth loss in young balsam fir: artificial defoliation of potted trees. Canadian Journal of Forest Research 20: 902–9CrossRefGoogle Scholar
Powell, G.R. 1974. Initiation and development of lateral buds in Abies balsamea. Canadian Journal of Forest Research 4: 458–69Google Scholar
Raske, R.A., Carew, G.C. 1993. Pests in young stands and plantations-Newfoundland and Labrador. pp 38–9 in Moody, B.H. (Compiler), Forest insect and disease conditions in Canada 1991. Ottawa: Forest Insect and Disease Survey, Canadian Forest Service, Natural Resources CanadaGoogle Scholar
Reeks, W.A., Barter, G.W. 1951. Growth reduction and mortality of spruce caused by the European spruce sawfly, Gilpinia hercyniae (Htg.) (Hymenoptera: Diprionidae). Forestry Chronicle 27: 140–56CrossRefGoogle Scholar
Reich, P.B., Walters, M.B., Krause, S.C., Vanderklein, D.W., Raffa, K.F., Tabone, T. 1993. Growth, nutrition and gas exchange of Pinus resinosa following artificial defoliation. Trees (Berlin) 7: 6777CrossRefGoogle Scholar
Thomson, A.J., Van Sickle, G.A. 1980. Estimation of tree growth losses caused by pest activity. Canadian Journal of Forest Research 10: 176–82CrossRefGoogle Scholar
Wallace, D.R., Cunningham, J.C. 1995. Diprionid sawflies. pp 193232in Armstrong, J.A., Ives, W.G.H. (Editors), Forest insect pests in Canada. Ottawa: Science and Sustainable Development Directorate, Canadian Forest Service, Natural Resources CanadaGoogle Scholar
Wardle, P.A. 1967. Spacing in plantations. Forestry 40: 4769CrossRefGoogle Scholar
Webb, W.L. 1980. Starch content of conifers defoliated by the Douglas-fir tussock moth. Canadian Journal of Forest Research 10: 535–40Google Scholar
Wickman, B.E., Henshaw, D.L., Gollob, S.K. 1980. Radial growth in Grand fir and Douglas-fir related to defoliation by the Douglas-fir Tussock moth in the Blue Mountains outbreak. US Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, Research Paper PNW–269Google Scholar
Wilson, L.F. 1966. Effects of different population levels of the European pine sawfly on young Scotch pine trees. Journal of Economic Entomology 59: 1043–9Google Scholar