Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T10:59:39.990Z Has data issue: false hasContentIssue false

GROWTH, DEVELOPMENT, AND SURVIVAL OF THE LARVAE OF THE RED TURNIP BEETLE, ENTOMOSCELIS AMERICANA (COLEOPTERA: CHRYSOMELIDAE), ON BRASSICA CAMPESTRIS AND B. NAPUS (CRUCIFERAE)12

Published online by Cambridge University Press:  31 May 2012

G. H. Gerber
Affiliation:
Research Station, Agriculture Canada, Winnipeg, Manitoba R3T 2M9
A. A. Obadofin
Affiliation:
Research Station, Agriculture Canada, Winnipeg, Manitoba R3T 2M9

Abstract

Growth, development, and survival were investigated for the larvae of the red turnip beetle, Entomoscelis americana Brown, fed excised cotyledons or first true leaves of four cultivars of Brassica campestris L. (Torch, Echo, Candle, and R500) or three cultivars of B. napus L. (Midas, Target, and Tower) in the laboratory. The red turnip beetle has four larval instars and its growth curve is S-shaped. The seven cultivars of B. campestris and B. napus tested were suitable host plants for the larvae. On all the cultivars, survival was relatively high, the weights and developmental times were similar, and the percentage of malformed adults was low. In B. campestris and B. napus, the cotyledon stage was marginally better than the first true leaf stage as food for the larvae. Survival usually was higher and in one of the three experiments the adults at emergence were heavier on the cotyledons than on the first true leaves. However, the developmental times were similar, except in one of the three experiments where they were longer on the cotyledons, and the incidence of malformed adults was low on both stages of plant growth.

Résumé

On a étudié en laboratoire la croissance, le développement et la survie des larves de la chrysomèle du navet, Entomoscelis americana Brown, nourrie de cotylédons excisés ou de premières feuilles vraies de 4 cultivars de Brassica campestris L. (Torch, Echo, Candle et R500) ou de 3 cultivars de B. napus L. (Midas, Target et Tower). L’insecte comprend 4 stades larvaires et sa courbe de croissance est sinusoîdale. Les 7 cultivars de B. campestris et de B. napus testés sont acceptables comme plantes hôtes pour les larves. Pour tous les cultivars, la survie est relativement élevée, les poids et les temps de développement sont semblables et le taux d’adultes déformés est faible. Chez B. campestris et B. napus, le stade cotylédon s’avère légèrement plus propice que celui de la première feuille vraie comme nourriture pour les larves. La survie est généralement plus grande et, dans l’une des 3 expériences, les adultes sont plus lourds à l’émergence sur les cotylédons que sur les premières feuilles vraies. Toutefois, les temps de développement sont analogues, sauf dans l’une des 3 experiences où ils sont plus longs sur cotylédons, et la fréquence d’adultes déformés est faible pour les deux stades de croissance végétale.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aae-Jorgensen, E. 1972. Nutritional value of rapeseed oil. pp. 301352in Appelqvist, L. A. and Ohlson, R. (Eds.), Rapeseed: Cultivation, Composition, Processing and Utilization. Elsevier, Amsterdam.Google Scholar
Andrewartha, H. G. and Birch, L. C.. 1954. The distribution and abundance of animals. Univ. of Chicago Press, Chicago and London.Google Scholar
Appelqvist, L. A. 1976. Lipids in Cruciferae. pp. 221227in Vaughan, J. G., Macleod, A. J., and Jones, B. M. G. (Eds.), The Biology and Chemistry of the Cruciferae. Academic Press, London and New York.Google Scholar
Beare-Rogers, J. L. 1975. Vegetable oils and human nutrition. pp. 587603in Harapiak, J. T. (Ed.), Oilseed and Pulse Crops in Western Canada—A symposium. Modem Press, Saskatoon.Google Scholar
Blau, P. A., Feeny, P., and Contardo, L.. 1978. Allyl glucosinolate and herbivorous caterpillars: a contrast in toxicity and tolerance. Science 200: 12961298.Google Scholar
Brown, W. J. 1942. The American species of Entomoscelis and Hippuriphila (Coleoptera: Chrysomelidae). Can. Ent. 74: 172176.Google Scholar
Bucher, G. E. and Bracken, G. K.. 1976. The bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Artificial diet and rearing technique. Can. Ent. 108: 13271338.Google Scholar
Canada Committee on Grain Quality. Minutes, 60. 1976. Report on cooperative rapeseed and mustard tests, Appendix C-5 and C-12.Google Scholar
Canada Committee on Grain Quality. Minutes, 61. 1977. Report on cooperative rapeseed and mustard tests, Appendix C-7 and C-19.Google Scholar
Cibula, A. B., Davidson, R. H., Fisk, F. W., and Lapidus, J. B.. 1967. Relationship of free amino acids of some solanaceous plants to growth and development of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Ann. ent. Soc. Am. 60: 626631.CrossRefGoogle ScholarPubMed
Davis, G. R. F. 1974. Evaluation of the nutritional value of proteins of rape, turnip rape, and yellow mustard seed by larvae of the yellow mealworm, Tenebrio molitor L. Arch. int. Physiol. Biochim. 82: 141148.Google ScholarPubMed
Downey, R. K., Klassen, A. J., and McAnsh, J. (Eds.) 1974. Rapeseed: Canada's “Cinderella” crop. Rapeseed Ass. Can. Publ. 33.Google Scholar
Downey, R. K., Stringam, G. R., McGregor, D. I., and Stefansson, B. R.. 1975. Breeding rapeseed and mustard crops. pp. 157183in Harapiak, J. T. (Ed.), Oilseed and Pulse Crops in Western Canada—A symposium. Modern Press, Saskatoon.Google Scholar
Feeny, P. P., Paauwe, K. L., and Demong, N. J.. 1970. Flea beetles and mustard oils: host plant specificity of Phyllotreta cruciferae and P. striolata adults. Ann. ent. Soc. Am. 63: 832841.CrossRefGoogle Scholar
Gerber, G. H. 1974. Red turnip beetle on rape. Canadex 149. 622.Google Scholar
Gerber, G. H. 1976. Effects of feeding by adults of the red turnip beetle, Entomoscelis americana Brown (Coleoptera: Chrysomelidae), during late July and August on the yield of rapeseed (Cruciferae). Manitoba Ent. 10: 3135.Google Scholar
Handford, R. H. 1932. The biology of the peppergrass beetle, Galeruca externa Say, with frequent references to the red turnip beetle, Entomoscelis adonidis (Pallas), and to the external larval morphology of both species (Coleoptera: Chrysomelidae). M.Sc. Thesis, Univ. of Saskatchewan, Saskatoon. 82 pp.Google Scholar
Harper, F. R. and Berkenkamp, B.. 1975. Revised growth-stage key for Brassica campestris and B. napus. Can. J. Pl. Sci. 55: 657658.CrossRefGoogle Scholar
Hicks, K. L. 1974. Mustard oil glucosides: feeding stimulants for adult cabbage flea beetles, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Ann. ent. Soc. Am. 63: 261264.CrossRefGoogle Scholar
Hovanitz, W., Chang, V. C. S., and Honch, G.. 1963. The effectiveness of different isothiocyanates on attracting larvae of Pieris rapae. J. Res. Lepid. 4: 249259.Google Scholar
Manolache, F. 1941. Research on the morphology, biology and control of the insect Entomoscelis adonidis Pall. in Romania. Institute Agronomical Res. of Romania (Bucharest). Methods, Guidance and Investigations 71. 201 pp. (In Romanian.)Google Scholar
Nielsen, J. K. 1978. Host plant discrimination within Cruciferae: feeding responses of four leaf beetles (Coleoptera: Chrysomelidae) to glucosinolates, cucurbitacins and cardenolides. Entomologia exp. appl. 24: 4154.CrossRefGoogle Scholar
Obadofin, A. A. 1979. Growth, development, survival and food selection in larvae of the red turnip beetle, Entomoscelis americana Brown (Coleoptera: Chrysomelidae), on species of Cruciferae. Ph.D. Thesis, Univ. of Manitoba, Winnipeg. 163 pp.Google Scholar
Painter, R. H. 1951. Insect resistance in crop plants. Macmillan, New York.Google Scholar
Schoonhoven, L. M. 1967. Chemoreception of mustard oil glucosides in larvae of Pieris brassicae. Proc. K. Ned. Akad. Wetenschappen 70(C): 556568.Google Scholar
Shorland, F. B. 1963. The distribution of fatty acids in plant lipids. pp. 253311in Swain, T. (Ed.), Chemical Plant Taxonomy. Academic Press, London and New York.CrossRefGoogle Scholar
Slansky, F. Jr., and Feeny, P. P.. 1977. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecol. Monogr. 47: 209228.CrossRefGoogle Scholar
Snedecor, G. W. and Cochran, W. G.. 1967. Statistical Methods. Iowa State College Press, Ames.Google Scholar
Stefansson, B. R. 1975. Rapeseed breeding in western Canada. pp. 2225in McLeod, A. D. (Ed.), The story of Rapeseed in Western Canada. Published by Saskatchewan Wheat Pool on its 50th Anniversary (19241974).Google Scholar
Stewart, D. B. 1973. The red turnip beetle, Entomoscelis americana Brown (Coleoptera: Chrysomelidae), biology and plant relationships. M.Sc. Thesis, Univ. of Alberta, Edmonton. 86 pp.Google Scholar
Taylor, W. E. and Bardner, R.. 1968. Leaf injury and food consumption by larvae of Phaedon cochleariae (Coleoptera: Chrysomelidae) and Plutella maculipennis (Lepidoptera: Plutellidae) feeding on turnip and radish. Entomologia exp. appl. 11: 177184.CrossRefGoogle Scholar
Turnock, W. J., Gerber, G. H., Bickis, M., and Bennett, R. B.. 1979. The applicability of X-ray energy-dispersive spectroscopy to the identification of populations of red turnip beetle, Entomoscelis americana (Coleoptera: Chrysomelidae). Can. Ent. 111: 113125.CrossRefGoogle Scholar
Van Emden, H. F. 1972. Aphids as phytochemists. pp. 2543in Harborne, J. B. (Ed.), Phytochemical Ecology. Academic Press, London.Google Scholar
Van Emden, H. F. and Way, M. J.. 1973. Host plants in the population dynamics of insects. pp. 181191in van Emden, H. F. (Ed.), Insect/plant relationships. Symp. R. ent. Soc. Lond. 6.Google Scholar
Vles, R. O. 1975. Nutritional aspects of rapeseed oils. Proc. int. Rapeseed Congr. Giessen 4. pp. 1730.Google Scholar