Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T11:57:15.926Z Has data issue: false hasContentIssue false

FURTHER STUDIES ON THE BIOLOGY OF PYRRHARCTIA (ISIA) ISABELLA (LEPIDOPTERA: ARCTIIDAE): III. THE RELATION BETWEEN HEAD CAPSULE WIDTH AND NUMBER OF INSTARS

Published online by Cambridge University Press:  31 May 2012

Mark S. Goettel
Affiliation:
Department of Biology, University of Ottawa, Ottawa K1N 6N5
Bernard J. R. Philogène
Affiliation:
Department of Biology, University of Ottawa, Ottawa K1N 6N5

Abstract

Head capsule widths of laboratory-reared and mature field-collected larvae of P. isabella were measured. The number of larval instars varied from 7 to 10, yet in all larvae studied, average size and increment in the successive instars were the same for instars 1 to 3. In the latter instars, there was an inverse relationship between size of increment and prospective number of instars. Insects which completed 10 instars were only a little larger than those maturing after only 7 instars. These data fail to support Dyar’s rule.

Résumé

On a mesuré la largeur des capsules céphaliques des larves de P. isabella élevées en laboratoire et celles de dernier âge récoltées sur le terrain. Le nombre de stades larvaires variait de 7 à 10, mais dans tous les cas étudiés, la taille et l’augmentation moyennes des stades successifs étaient semblables pour les stades 1 à 3. Dans ces derniers cas, il y avait une relation inverse entre la valeur de l’augmentation et le nombre éventuel de stades. Les insectes qui ont complété 10 stades larvaires étaient légèrement plus gros que ceux atteignant leur maturité après 7 stades seulement. Ces résultats ne s’accordent pas avec la loi de Dyar.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bliss, C. I. and Beard, R. I.. 1954. The growth of the head capsule in individual milkweed bugs. Ann. ent. Soc. Am. 47: 388392.CrossRefGoogle Scholar
Drooz, A. T. 1965. Elm spanworm head capsule widths and instars. J. econ. Ent. 58: 629631.CrossRefGoogle Scholar
Dyar, H. G. 1890. The number of moults of lepidopterous larvae. Psyche, Camb. 5: 420422.Google Scholar
Fogal, W. H. and Kwain, M. J.. 1972. Host plant nutritive value and variable number of instars in a sawfly, Diprion similis. Israel J. Ent. 7: 6373.Google Scholar
Gaines, J. C. and Campbell, F. L.. 1935. Dyar's rule as related to the number of instars of the corn earworm, Heliothis obsoleta Fab. collected in the field. Ann. ent. Soc. Am. 28: 445461.CrossRefGoogle Scholar
Geyspitz, K. F. and Zarankina, A. I.. 1963. Some features of the photoperiodic reaction of Dasychira pudibunda L. (Lepidoptera: Orgyidae). Ent. Rev. 42: 1419.Google Scholar
Goettel, M. S. and Philogène, B. J. R.. 1978 a. Laboratory rearing of the banded woollybear, Pyrrharctia (Isia) isabella (Lepidoptera: Arctiidae), on different diets with notes on the biology of the species. Can. Ent. 110: 10771086.CrossRefGoogle Scholar
Goettel, M. S. and Philogène, B. J. R.. 1978 b. Effects of photoperiod and temperature on the development of a univoltine population of the banded woollybear, Pyrrharctia (Isia) isabella (J. E. Smith) (Lepidoptera: Arctiidae). J. Insect Physiol. 24: 523527.CrossRefGoogle Scholar
Hoxie, R. P. and Wellso, S. G.. 1974. Cereal leaf beetle instars and sex, defined by larval head capsule widths. Ann. ent. Soc. Am. 67: 183186.Google Scholar
Ingram, B. R. 1976. Effects of photoperiod and temperature on abnormal wing-pad development in two species of Odonata. Can. J. Zool. 54: 11031110.CrossRefGoogle Scholar
Kishi, Y. 1971. Reconsideration of the method to measure the larval instars by the use of the frequency distribution of the head-capsule widths or lengths. Can. Ent. 103: 10111015.Google Scholar
McGinnis, A. M. and Kasting, R.. 1959. Nutrition of the pale western cutworm, Agrotis orthogonia Morr. (Lepid.: Noctuidae). I. Effects of underfeeding and artificial diets on growth and development, and a comparison of wheat sprouts of Thatcher, Triticum aestivum L. and Golden Ball, T. durum Desf. as food. Can. J. Zool. 37: 259266.CrossRefGoogle Scholar
Moreau, J. P. 1964. A propos de la biologie d'Arctia caja L. (Lepidoptera: Arctiidae). XIIth int. Congr. Ent. London, 1964.Google Scholar
Nijhout, H. F. 1975. A threshold size for the metamorphosis in the tobacco hornworm, Manduca sexta (L.). Biol. Bull. 149: 214225.CrossRefGoogle ScholarPubMed
Philogène, B. J. R. and Benjamin, D. M.. 1971. Temperature and photoperiod effects on the immature stages and adults of Neodiprion swainei (Hymenoptera: Diprionidae). Can. Ent. 103: 17051715.CrossRefGoogle Scholar
Pipa, R. L. 1971. Neuroendocrine involvement in the delayed pupation of space-deprived Galleria mellonella (Lepidoptera). J. Insect Physiol. 17: 24412450.CrossRefGoogle ScholarPubMed
Pipa, R. L. 1976. Supernumerary instars produced by chilled wax moth larvae: Endocrine mechanisms. J. Insect Physiol. 22: 16411647.CrossRefGoogle Scholar
Plantevin, G. 1975. Contribution à l'étude de la biologie de Galleria mellonella: Mues., croissance et développement. Annls Zool. Ecol. Anim. 7: 365398.Google Scholar
Poitout, S. and Cayrol, R.. 1969. Action de différents facteurs sur le nombre de stades larvaires chez la noctuelle de la tomate, Helicoverpa armigera Hbn. Ann. Soc. ent. Fr. (N.S.) 5: 407427.CrossRefGoogle Scholar
Raske, A. G. 1976. Complexities in the number of larval instars of the birch casebearer in Newfoundland (Lepidoptera: Coleophoridae). Can. Ent. 108: 401405.Google Scholar
Richards, O. W. 1949. The relation between measurements of the successive instars of insects. Proc. R. ent. Soc. Lond. (Ser. A, Gen. Ent.) 24: 810.Google Scholar
Wigglesworth, V. B. 1972. The Principles of Insect Physiology, 7th ed. Chapman & Hall, London. 827 pp.CrossRefGoogle Scholar