Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T17:31:12.427Z Has data issue: false hasContentIssue false

FORECASTING PHENOLOGY OF ORTHOSIA HIBISCI GUENÉE (LEPIDOPTERA: NOCTUIDAE) IN BRITISH COLUMBIA USING SEX-ATTRACTANT TRAPS AND DEGREE-DAY MODELS1

Published online by Cambridge University Press:  31 May 2012

Gary J.R. Judd
Affiliation:
Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia, Canada V0H 1Z0
Mark G.T. Gardiner
Affiliation:
Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia, Canada V0H 1Z0

Abstract

Emergence, oviposition, and seasonal flight activity of adult, speckled green fruit worm, Orthosia hibisci Guenée (Lepidoptera: Noctuidae), were monitored during 1991 and 1992 in a mixed block of McIntosh and Spartan apple trees at Summerland, British Columbia, to establish relationships between the phenology of these events and degree-days (DD). Using air temperatures and a developmental threshold of 3 °C, median emergence of males was predicted most accurately (0–2 days) by starting DD summations on 1 March. Median emergence of females was predicted without error when first catch of a male in a trap baited with sex attractant was used as a population reference point (biofix) to start DD summation. Using a threshold temperature of 3 °C, observed cumulative emergence of females reached 50% at 63.5 ± 4.05 DD3 °C after biofix, similar to the laboratory-derived prediction of 61.3 ± 4.2 DD with a threshold temperature of 2.8 °C. Catches of males with sex attractant preceded oviposition, but female catches in light traps lagged behind oviposition, suggesting older females were being caught in light traps. The oviposition curve was linear and parallel to the cumulative curve of male catches with sex attractant. Oviposition began at 26.7 DD3 °C and reached 50% at 94.2 DD3 °C after biofix, respectively. Weibull equations fitted to observed cumulative catches with sex attractant, female emergence, and oviposition, combined with laboratory-derived DD models of egg and larval development, were used to predict phenology of O. hibisci and correlate it with flowering phenology of pome fruits. This study provides a basis for timing application of selective insecticides against O. hibisci based on first catch in a sex-attractant trap and DD summations.

Résumé

L’émergence, la ponte et le vol saisonnier des adultes de l’Orthosie verte, Orthosia hibisci Guenée (Lepidoptera : Noctuidae), ont été étudiés en 1991 et 1992 dans un verger de pommiers McIntosh et Spartan à Summerland, Colombie-Britannique, dans le but d’établir la relation entre ces événements et la sommation des degrés-jours (DJ). En tenant compte de la température de l’air et du seuil de développement de 3 °C, l’émergence médiane des mâles a pu être établie assez exactement (0–2 jours) en commençant la sommation des degrés-jours le 1er mars. L’émergence médiane des femelles a été prévue exactement lorsque la première capture d’un mâle dans un piège à phéromones a servi de biopoint pour commencer la sommation des degrés-jours. L’émergence cumulative réelle des femelles a atteint 50% à 63,5 ± 4,05 DJ3 °C après le biopoint, une valeur semblable à la valeur théorique établie en laboratoire, 61,3 ± 4,2 DJ2,8 °C. La capture de mâles dans les pièges à phéromones a précédé la ponte, mais, dans des pièges lumineux, des femelles ont continué d’être capturées après la ponte, ce qui semble indiquer que des femelles plus âgées étaient attirées par les pièges lumineux. La courbe de la ponte était linéaire et parallèle à la courbe cumulative de capture des mâles dans les pièges à phéromones. La ponte a commencé à 26,7 DJ3 °C et a atteint une valeur de 50% à 94,2 DJ3 °C après le biopoint. Des équations de Weibull ajustées à la courbe cumulative de capture dans les pièges à phéromones, à l’émergence des femelles et à la ponte, combinées aux modèles de développement des oeufs et des larves basés sur les degrés-jours en laboratoire, ont permis d’établir la phénologie d’O. hibisci et de la relier à la phénologie de la floraison des pommiers. Les résultats de cette étude permettront de prévoir la période optimale d’application d’insecticides sélectifs contre O. hibisci d’après les premières captures dans des pièges à phéromones et la sommation des degrés-jours.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.C. 1976. A modified sine wave method for calculating degree days. Environmental Entomology 5: 388396.CrossRefGoogle Scholar
Bergh, J.C., and Judd, G.J.R.. 1993. Degree-day model for predicting emergence of pear rust mite (Acari: Eriophyidae) deutogynes from overwintering sites. Environmental Entomology 22: 13251332.Google Scholar
British Columbia Ministry of Agriculture, Fisheries, and Food. 1995. Tree Fruit Production Guide: Interior Districts. British Columbia Ministry of Agriculture, Fisheries, and Food, Victoria, B.C.Google Scholar
Chapman, P.J., and Lienk, S.E.. 1974. Green fruitworms. New York Food Life Sciences Bulletin 49.Google Scholar
Charmillot, P.-J., Hächler, M., and Pasquier, D.. 1994 a. Noctuelles et arpenteuses nuisibles en arboriculture. Revue Suisse Viticulture, Arboriculture, Horticulture 26: 367378.Google Scholar
Charmillot, P.-J., Pasquier, D., and Alipaz, N.J.. 1994 b. Le tébufénozide, un nouveau produit sélectif de lutte contre le carpocapse Cydia pomonella L. et la tordeuse de la pelure Adoxophyes orana F.v.R. Revue Suisse Viticulture, Arboriculture, Horticulture 26: 123129.Google Scholar
Cossentine, J.E., and Jensen, L.B.. 1995. Orthosia hibisci Guenée (Lepidoptera: Noctuidae): indigenous parasitoids and the impact of Earinus limitarus (Say) (Hymenoptera: Ichneumonidae) on its hosts feeding activity. The Canadian Entomologist 127: 473477.CrossRefGoogle Scholar
Dyck, V.A., and Gardiner, M.G.T.. 1992. Sterile-insect release program tocontrol the codling moth Cydia pomonella (L.) (Lepidoptera: Olethreutidae) in British Columbia, Canada. Acta Phytopathologica et Entomologica Hungarica 27: 219222.Google Scholar
Finney, D.J. 1971. Probit Analysis. 3rd ed. Cambridge University Press, London.Google Scholar
Higley, L.G., Pedigo, L.P., and Astlie, K.R.. 1986. DEGDAY: a program for calculating degree-days, and assumptions behind the degree-day approach. Environmental Entomology 15: 9991016.Google Scholar
Judd, G.J.R., and Gardiner, M.G.T.. 1992. Large-scale commercial trials of pheromone-mediated mating disruption for control of codling moth, in British Columbia apple and pear orchards. Unpublished report, Pacific Agri-Food Research Centre, Summerland, B.C.Google Scholar
Judd, G.J.R., and McBrien, H.L.. 1994. Modeling temperature-dependent development and hatch of overwintered eggs of Campylomma verbasci (Heteroptera: Miridae). Environmental Entomology 23: 12241234.CrossRefGoogle Scholar
Judd, G.J.R., Cossentine, J.E., Gardiner, M.G.T., and Thomson, D.R. 1994. Temperature-dependent development of the speckled green fruitworm, Orthosia hibisci Guenée (Lepidoptera: Noctuidae). The Canadian Entomologist 126: 12631275.CrossRefGoogle Scholar
Judd, G.J.R., Gardiner, M.G.T., and Thomson, D.R.. 1996. Monitoring and predicting seasonal flight of Orthosia hibisci (Lepidoptera: Noctuidae) in the Okanagan and Sirnilkameen Valleys of British Columbia. Journal of the Entomological Society of British Columbia 93: 1122.Google Scholar
Lienk, S.E., and Chapman, P.J.. 1978. Flight periods of Orthosia hibisci Guenée (Noctuidae: Lepidoptera) in relation to the calendar, temperature and host development. Journal of the New York Entomological Sociely 4: 304.Google Scholar
Madsen, H.F., and Carty, B.E.. 1979. Organic pest control: two years experience in a commercial apple orchard. Journal of the Entomological Society of British Columbia 76: 35.Google Scholar
Madsen, H.F., and Procter, P.J.. 1985. Insects and Mites of Tree Fruits in British Columbia. British Columbia Ministry of Agriculture and Food, Victoria, B.C.Google Scholar
Paradis, R.O. 1978. Orthosia hibisci (Guenée) (Lépidoptères:Noctuidae) dans les pommeraies du sud-ouest du Québec. I. Description et comportement. Phytoprotection 59: 92100.Google Scholar
Philip, H.G., and Edwards, L.. 1991. Field Guide to Harmful and Beneficial Insects and Mites of Tree Fruits. British Columbia Ministry of Agriculture, Fisheries, and Food, Victoria, B.C.Google Scholar
Reidl, R.W., Croft, B.A., and Howitt, A.J.. 1976. Forecasting codling moth phenology based on pheromone trap catches and physiological-time models. The Canadian Entomologist 108: 449460.Google Scholar
Rings, R.W. 1970. Contributions to the bionomics of green fruitworms: the life history of Orthosia hibisci. Journal of Economic Entomology 63: 15621568.CrossRefGoogle Scholar
Rings, R.W. 1975. Faunal composition of the green fruitworm complex. Journal of Economic Entomology 68: 178180.Google Scholar
Shorey, H.H., and Hale, R.L.. 1965. Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology 58: 522524.CrossRefGoogle Scholar
Vincent, C., and Simard, L.-G.. 1986. Monitoring Orthosia hibisci (Lepidoptera: Noctuidae) with Pherocon 1C and Hara traps. Journal of Economic Entomology 79: 14971500.CrossRefGoogle Scholar
Welch, S.M., and Croft, B.A.. 1983. Models of direct fruit pests of apple. pp. 343368in Croft, B.A., and Hoyt, S.C. (Eds.), Integrated Management of Insect Pests of Pome and Stone Fruits. John Wiley and Sons Inc., New York.Google Scholar
Zar, J.H. 1984. Biostatistical Analysis. 2nd ed. Prentice-Hall Inc., Englewood Cliffs, N.J.Google Scholar