Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T05:29:25.792Z Has data issue: false hasContentIssue false

Fitness, parasitoids, and biological control: an opinion1

Published online by Cambridge University Press:  31 May 2012

B.D. Roitberg
Affiliation:
Behavioral Ecology Research Group and Center for Pest Management, Department of Biosciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
G. Boivin*
Affiliation:
Horticultural Research and Development Centre, Agriculture and Agri-Food Canada, 430 Boulevard Gouin, Saint-Jean-sur-Richelieu, Quebec, Canada J3B 3E6
L.E.M. Vet
Affiliation:
Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, the Netherlands
*
2 Author to whom all correspondence should be addressed (e-mail: [email protected]).

Abstract

Fitness, defined as the per capita rate of increase of a genotype with reference to the population carrying the associated genes, is a concept used by biologists to describe how well an individual performs in a population. Fitness is rarely measured directly and biologists resort to proxies more easily measured but with varying connection to fitness. Size, progeny survival, and developmental rate are the most common proxies used in the literature to describe parasitoid fitness. The importance of the proxies varies between papers looking at evolutionary theories and those assessing ecological applications. The most direct measures of fitness for parasitoids are realised fecundity for females and mating ability for males, although these proxies are more difficult to measure under natural conditions. For practical purposes, measure of size, through body size or mass, is the proxy easiest to use while providing good comparative values; however, care must be taken when using a single proxy, as proxies can be affected differently by rearing conditions of the parasitoid.

Résumé

La valeur adaptative, définie comme le taux d’accroissement per capita d’un génotype en référence à une population possédant les gènes associés, est un concept utilisé par les biologistes pour décrire la performance d’un individu dans une population. Cependant la valeur adaptative est rarement mesurée directement et les biologistes utilisent plutôt des indices, plus faciles à mesurer mais qui sont de valeur inégale. La taille, la survie de la progéniture et le taux de développement sont les indices les plus souvent utilisés dans la littérature scientifique pour décrire la valeur adaptative des parasitoïdes. Toutefois, l’importance des indices varie selon que les articles traitent d’écologie évolutive ou d’écologie appliquée. Les indices les plus directement reliés à la valeur adaptative des parasitoïdes sont la fécondité réalisée pour les femelles et la capacité d’accouplement pour les mâles. Cependant, ces indices sont difficiles à mesurer dans des conditions réalistes. D’un point de vue pratique la taille, mesurée par le biais des dimensions ou de la masse du corps, est l’indice donnant une bonne valeur comparative le plus facile à utiliser. Toutefois, la prudence s’impose lorsqu’un seul indice est utilisé. En effet, les indices peuvent être influencés différemment par les conditions d’élevage d’un parasitoïde.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Publication of this invited article was funded by the CP Alexander Fund of The Entomological Society of Canada.

References

Baker, J.E., Perez-Mendoza, J., Beeman, R.W., Throne, J.E. 1998. Fitness of a malathion-resistant strain of the parasitoid Anisopteromalus calandrae (Hymenoptera: Pteromalidae). Journal of Economic Entomology 91: 50–5CrossRefGoogle Scholar
Bennett, D.M., Hoffmann, A.A. 1998. Effects of size and fluctuating asymmetry on field fitness of the parasitoid Trichogramma carverae (Hymenoptera: Trichogrammatidae). Journal of Animal Ecology 67: 580–91CrossRefGoogle Scholar
Bigler, F. 1994. Quality control in Trichogramma production. pp 93111in Wajnberg, E. and Hassan, S.A. (Eds), Biological control with egg parasitoids. Wallingford, United Kingdom: Commonwealth Agricultural Bureaux InternationalGoogle Scholar
Bourchier, R.S., Smith, S.M. 1996. Influence of environmental conditions and parasitoid quality on field performance of Trichogramma minutum. Entomologia Experimentalis et Applicata 80: 461–8CrossRefGoogle Scholar
Carrière, Y., Boivin, G. 1997. Evolution of thermal sensitivity of parasitization capacity in egg parasitoids. Evolution 51: 2026–30CrossRefGoogle ScholarPubMed
Carrière, Y., Roitberg, B. 1996. On the evolution of insect movement: contrasting behavioural ecology and quantitative genetics. Evolutionary Ecology 10: 289305CrossRefGoogle Scholar
Charnov, E.L. 1976. Optimal foraging: the marginal value theorem. Theoretical Population Biology 9: 129–36CrossRefGoogle ScholarPubMed
Cronin, J.T., Strong, D.R. 1996. Genetics of oviposition success of a thelytokous fairyfly parasitoid, Anagrus delicatus. Heredity 76: 4354CrossRefGoogle Scholar
de Jong, G. 1994. The fitness of fitness concepts and the description of natural selection. Quarterly Review of Biology 69: 329CrossRefGoogle Scholar
Eggleton, P., Gaston, K.J. 1990. “Parasitoid” species and assemblages: convenient definitions or misleading compromises? Oikos 59: 417–21CrossRefGoogle Scholar
Ellers, J., van Alphen, J.G., Sevenster, J.G. 1998. A field study of size-fitness relationships in the parasitoid Asobara tabida. Journal of Animal Ecology 67: 318–24CrossRefGoogle Scholar
Fernandez, C., Netwig, W. 1997. Quality control of the parasitoid Aphidius colemani (Hym., Aphidiidae) used for biological control in greenhouses. Journal of Applied Entomology 121: 447–56CrossRefGoogle Scholar
Godfray, H.C.J. 1994. Parasitoids, behavioral and evolutionary ecology. Princeton, New Jersey: Princeton University PressCrossRefGoogle Scholar
Hamilton, W.D. 1964. The genetical evolution of social behaviour. 1. Journal of Theoretical Biology 7: 116CrossRefGoogle Scholar
Heimpel, G., Rosenheim, J., Mangel, M. 1998. Effects of time limitation and egg limitation on lifetime reproductive success of a parasitoid in the field. American Naturalist 152: 273–89CrossRefGoogle ScholarPubMed
Hoffman, A.A. 1994. Genetic analysis of territoriality of Drosophila melanogaster. pp 188205in Boake, C. (Ed), Quantitative genetic studies of behavioral evolution. Chicago: University of Chicago Press.Google Scholar
Ito, Y. 1980. Comparative ecology. Cambridge: Cambridge University PressGoogle Scholar
Ives, A., Hochberg, M. (Editors). 2000. Parasitoid population biology. Princeton, New Jersey: Princeton University Press.Google Scholar
Janssen, A.R.M. 1989. Optimal host selection by Drosophila parasitoids in the field. Functional Ecology 3: 469–79CrossRefGoogle Scholar
Kazmer, D.J., Luck, R. 1995. Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma pretiosum. Ecology 76: 412–25CrossRefGoogle Scholar
King, B.H., Lee, H.E. 1994. Test of the adaptiveness of sex ratio manipulation in a parasitoid wasp. Behavioral Ecology and Sociobiology 35: 437–43CrossRefGoogle Scholar
Krebs, J.R., Davies, N.B. (Editors). 1978. Behavioural ecology: an evolutionary approach. Sunderland, Massachusetts: SinauerGoogle Scholar
Krebs, J.R., Davies, N.B. 1987. An introduction to behavioural ecology. Oxford: Blackwell ScientificGoogle Scholar
Lande, R., Arnold, S. 1983. The measurement of selection on correlated characters. Evolution 37: 1210–26CrossRefGoogle ScholarPubMed
Minkenberg, O., Tatar, M., Rosenheim, J. 1992. Egg load as a major source of variability in insect foraging and oviposition behavior. Oikos 65: 134–42CrossRefGoogle Scholar
Nicol, C.M., Mackauer, M. 1999. The scaling of body size and mass in a host–parasitoid association: influence of host species and stage. Entomologia Experimentalis et Applicata 90: 8392CrossRefGoogle Scholar
Pierce, G.J., Ollason, J.G. 1987. Eight reasons why optimal foraging theory is a complete waste of time. Oikos 49: 111–8CrossRefGoogle Scholar
Price, P.W. 1975. Reproductive strategies of parasitoids. pp 87111in Price, P.W. (Ed), Evolutionary strategies of parasitoids. New York: PlenumGoogle Scholar
Roff, D.A. 1992. The evolution of life histories. New York: Chapman and HallGoogle Scholar
Roitberg, B.D. 2000. Threats, flies and protocol gaps: can evolutionary ecology save biological control? pp 254–65 in Hochberg, M., Ives, A. (Eds), Parasitoid population biology. Princeton, New Jersey: Princeton University PressCrossRefGoogle Scholar
Roitberg, B., Sircom, J., Roitberg, C., van Alphen, J., Mangel, M. 1992. Seasonal dynamic shifts in patch exploitation by parasitic wasps. Behavioral Ecology 3: 156–65CrossRefGoogle Scholar
Roitberg, B., Sircom, J., Roitberg, C., van Alphen, J., Mangel, M. 1993. Life expectancy and reproduction. Nature (London) 364: 108CrossRefGoogle ScholarPubMed
Romeis, J., Shanover, T.G., Jyothirmayi, K.N.S. 1998. Constraints on the use of Trichogramma egg parasitoids in biological control programmes in India. Biocontrol Science and Technology 8: 289–99CrossRefGoogle Scholar
Sequeira, R., Mackauer, M. 1994. Variation in selected life-history parameters of the parasitoid wasp, Aphidius ervi: influence of host developmental stage. Entomologia Experimentalis et Applicata 71: 1522Google Scholar
Sibly, R.M., Smith, R.H. (Editors). 1985. Behavioural ecology: ecological consequences of adaptive behaviour. Oxford: Blackwell Scientific PublicationsGoogle Scholar
Simberloff, D., Stiling, P. 1996. How risky is biological control? Ecology 77: 1965–74CrossRefGoogle Scholar
Sorati, M., Newman, M., Hoffmann, A.A. 1996. Inbreeding and incompatibility in Trichogramma nr. brassicae: evidence and implications for quality control. Entomologia Experimentalis et Applicata 78: 283–90CrossRefGoogle Scholar
Speirs, D., Sherratt, T., Hubbard, S.F. 1991. Parasitoid diets: does superparasitism pay? Trends in Ecology and Evolution 6: 22–5Google Scholar
Steams, S.C. 1989. The evolutionary significance of phenotypic plasticity. BioScience 39: 436–45Google Scholar
Steams, S.C. 1992. The evolution of life histories. Oxford: Oxford University PressGoogle Scholar
Steams, S.C., Schmid-Hempel, P. 1987. Evolutionary insights should not be wasted. Oikos 49: 118–25Google Scholar
Ueno, T. 1997. Effects of superparasitism, larval competition, and host feeding on offspring fitness in the parasitoid Pimpla nipponica (Hymenoptera: Ichneumonidae). Annals of the Entomological Society of America 90: 682–8CrossRefGoogle Scholar
Ueno, T. 1998. Adaptiveness of sex ratio by the pupal parasitoid Itoplectis naranyae (Hymenoptera: Ichneumonidae) in response to host size. Evolutionary Ecology 12: 643–54CrossRefGoogle Scholar
van Baaren, J., Boivin, G. 1998. Learning affects host discrimination behavior in a parasitoid wasp. Behavioral Ecology and Sociobiology 42: 916Google Scholar
van Baaren, J., Boivin, G., Nénon, J.P. 1995. Intraspecific hyperparasitism in a primary hymenopteran parasitoid. Behavioral Ecology and Sociobiology 36: 237–42CrossRefGoogle Scholar
van Bergeijk, K.E., Bigler, F., Kaashoek, N.K., Pak, G.A. 1989. Changes in host acceptance and host suitability as an effect of rearing Trichogramma maidis on a facticious host. Entomologia Experimentalis et Applicata 52: 229–38CrossRefGoogle Scholar
Vet, L.E.M., Datema, A., Janssen, A., Snellen, H. 1994. Clutch size in a larval–pupal endoparasitoid: consequences for fitness. Journal of Animal Ecology 63: 807–15CrossRefGoogle Scholar
Visser, M.E. 1994. The importance of being large: the relationship between size and fitness in females of the parasitoid Aphaerata minuta (Hymenoptera: Braconidae). Journal of Animal Ecology 63: 963–78CrossRefGoogle Scholar
Visser, M.E. 1995. The effect of competition on oviposition decisions of Leptopilina heterotoma (Hymenoptera: Eucoilidae) Animal Behaviour 49: 1677–87CrossRefGoogle Scholar
Visser, M.E. 1996. The influence of competition between foragers on clutch size decisions in an insect parasitoid with scramble larval competition. Behavioral Ecology 7: 109–14CrossRefGoogle Scholar