Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T04:12:24.029Z Has data issue: false hasContentIssue false

FECUNDITY OF MAYFLIES (EPHEMEROPTERA), WITH SPECIAL REFERENCE TO MAYFLIES OF A BROWN-WATER STREAM OF ALBERTA, CANADA

Published online by Cambridge University Press:  31 May 2012

Hugh F. Clifford
Affiliation:
Department of Zoology, University of Alberta, Edmonton
Hans Boerger
Affiliation:
Department of Zoology, University of Alberta, Edmonton

Abstract

A review of studies of mayfly fecundity (number of eggs produced per life span) indicates that some of the larger mayflies, e.g. Palingenia and Hexagenia, have total potential fecundity values that are higher than found in most other insect groups. For 12 mayfly species of a brown-water stream in Alberta, Canada, fecundity of the subimagoes was generally predictable from the size of the female regardless of the particular species. An exception was Leptophlebia cupida, which, for a given length, had a much higher fecundity than any of the other species and a much larger increase in fecundity per unit increase in body length. L. cupida averaged 362 eggs/mm body length, while the other species had an average egg production of between 100 and 200 eggs/mm body length. The small species, although having a relatively low total fecundity, produced more eggs per unit volume of abdominal space than did the larger species. By combining quantitative emergence data and fecundity data, we calculated that the entire mayfly fauna produced about 300,000 eggs/m2 per year and that it takes an average of 934 eggs to produce one subimago of the next generation.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Public Health Association et al. 1971. Standard methods for the examination of water and wastewater. 13th ed. Am. Public Health Assoc., New York. 874 pp.Google Scholar
Benech, V. 1972. La fecondité de Baetis rhodani Pictet. Freshwat. Biol. 2: 337354.CrossRefGoogle Scholar
Brinck, P. 1957. Reproductive system and mating in Ephemeroptera. Opusc. ent. 22: 137.Google Scholar
Britt, N. W. 1962. Biology of two species of Lake Erie mayflies, Ephoron album (Say) and Ephemera simulans Walker. Bull. Ohio biol. Surv., No. 1. 70 pp.Google Scholar
Clemens, W. A. 1917. An ecological study of the mayfly Chirotenetes. Univ. Toronto Stud. biol. Ser. 17: 343.Google Scholar
Clifford, H. F. 1969. Limnological features of a northern brown-water stream, with special reference to the life histories of the aquatic insects. Am. Midl. Nat. 82: 578597.CrossRefGoogle Scholar
Clifford, H. F. 1970. Analysis of a northern mayfly (Ephemeroptera) population, with special reference to allometry of size. Can. J. Zool. 48: 305316.CrossRefGoogle Scholar
Clifford, H. F. 1972. A year's study of the drifting organisms in a brown-water stream of Alberta, Canada. Can. J. Zool. 50: 975983.CrossRefGoogle Scholar
Darchis, A. 1964. Essais de réalisation de la fécondation artificielle chez Ephemera vulgata (Linné). Archs Zool. exp. gén. 104: 135139.Google Scholar
Davidson, A. 1956. A method of counting ephemeropteran eggs. Entomologist's mon. Mag. 92: 109.Google Scholar
Degrange, C. 1960. Recherches sur la production des Ephémeroptères. Trav. Lab. Hydrobiol. Piscicult. Univ. Grenoble 50/51: 7193.Google Scholar
Engelmann, F. 1970. The physiology of insect reproduction. Pergamon Press. 377 pp.Google Scholar
Fremling, C. R. 1960. Biology of a large mayfly, Hexagenia bilineata (Say), of the Upper Mississippi River. Iowa St. Univ. Agric. Home Econ. exp. Stn Res. Bull. 482, pp. 841852.Google Scholar
Fremling, C. R. 1967. Methods for mass-rearing Hexagenia (Ephemeroptera: Ephemeridae). Trans. Am. Fish. Soc. 96: 407410.CrossRefGoogle Scholar
Grandi, M. 1947. Contributi allo studio degli Efemeroidei italiani. IX. Oligoneuriella rhenana Imh. Boll. 1st. Ent. Univ. Bologna 16: 176218.Google Scholar
Hartland-Rowe, R. 1958. The biology of a tropical mayfly Povilla adusta Navas (Ephemeroptera, Polymitarcidae) with special reference to the lunar rhythm of emergence. Revue Zool. Bot. afr. 58: 185202.Google Scholar
Hunt, B. P. 1951. Reproduction of the burrowing mayfly, Hexagenia limbata (Serville), in Michigan. Fla Ent. 34: 5970.CrossRefGoogle Scholar
Ide, F. P. 1940. Quantitative determination of the insect fauna of rapid water. Univ. Toronto Stud. Fish. Res. Lab. 59: 120.Google Scholar
Kosova, A. A. 1967. A contribution to the ecology of the mayfly Palingenia sublongicauda Tshern. in the Volga Delta. (In Russian, English summary.) Zool. Zh. 46: 18561859.Google Scholar
Minshall, J. D. 1967. Life history and ecology of Epeorus pleuralis (Banks) (Ephemeroptera: Heptageniidae). Am. Midl. Nat. 78: 369388.CrossRefGoogle Scholar
Morgan, A. H. 1913. A contribution to the biology of mayflies. Ann. ent. Soc. Am. 6: 371413.CrossRefGoogle Scholar
Neave, F. 1932. A study of the May flies (Hexagenia) of Lake Winnipeg. Contr. Can. Biol. Fish. 7: 179201.Google Scholar
Pescador, M. L. and Peters, W. L.. 1974. The life history and ecology of Baetisca rogersi (Ephemeroptera: Baetiscidae). Bull. Fla St. Mus. biol. Sci. 17: 151209.Google Scholar
Rousseau, E. 1921. Les larves and nymphes aquatiques des insectes d'Europe, I. Office de Publicité, Brussels. 967 pp.Google Scholar
Smith, O. R. 1935. The eggs and egg-laying habits of North America mayflies, pp. 67–89. In Needham, J. G., Traver, J. R., and Hsu, Yin-Chi, The biology of mayflies with a systematic account of North American species. Comstock, Ithaca. 793 pp.Google Scholar
Trost, L. M. W. and Berner, L.. 1963. The biology of Callibaetis floridanus Banks (Ephemeroptera: Baetidae). Fla Ent. 46: 285299.CrossRefGoogle Scholar
Wisely, B. 1961. Studies on Ephemeroptera. I. Coloburiscus humeralis (Walker); early life history and nymph. Trans. R. Soc. N.Z. (Zool.) 1: 249257.Google Scholar