Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T06:38:30.810Z Has data issue: false hasContentIssue false

Extreme cold weather causes the collapse of a population of Lambdina fiscellaria (Lepidoptera: Geometridae) in the Laurentian Mountains of Québec, Canada

Published online by Cambridge University Press:  29 March 2019

Johanne Delisle*
Affiliation:
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, Québec, G1V 4C7, Canada
Michèle Bernier-Cardou
Affiliation:
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, Québec, G1V 4C7, Canada
Alain Labrecque
Affiliation:
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, Québec, G1V 4C7, Canada
*
1Corresponding author (e-mail: [email protected])

Abstract

In 2012, an unexpected outbreak of Lambdina fiscellaria (Guenée) (Lepidoptera: Geometridae) occurred in the Laurentian Mountains, Québec, Canada, known for its harsh climate. We wondered whether the eggs were sufficiently cold hardy to survive there and, if so, how long this outbreak would last. Therefore, we assessed the capacity of the eggs to supercool, to tolerate short exposures to low sub-zero temperatures, or to successfully overwinter in the field. The same assays were performed with eggs from the island of Newfoundland, Newfoundland and Labrador, Canada. The mean supercooling point of eggs from the two populations increased from −40.2 °C in mid-February to −33.7 °C in mid-May. These eggs may also die at sub-zero temperatures above their supercooling point, depending on exposure durations. In the fall of 2012 when eggs were put out in the field, < 10% survived in the Laurentian Mountains, whereas > 70% survived further south. In the spring of 2013, no parasitism was detected in the population. However, the two cold waves that swept across the Laurentian Mountains the preceding winter were likely responsible for the collapse of the population. This study demonstrates that L. fiscellaria eggs may succumb to sub-zero temperatures above their supercooling point under field conditions.

Résumé

En 2012, une épidémie inattendue de Lambdina fiscellaria (Guenée) (Lepidoptera: Geometridae) s’est déclarée dans les Laurentides, une région froide du Québec, Canada. Nous avons donc examiné si les œufs étaient suffisamment résistants au froid pour y survivre et si oui, combien de temps durerait l’épidémie. Pour ce faire, la capacité des œufs à entrer en surfusion, à tolérer de courtes expositions sous les 0 °C ou à hiverner avec succès a été mesurée. Des œufs de l’Ⓘle de Terre-Neuve, Terre-Neuve et Labrador, Canada ont aussi été testés. Les points de surfusion des œufs des deux populations sont passés de −40.2 °C (mi-février) à −33.7 °C (mi-mai). Selon la durée d’exposition, les œufs pouvaient aussi mourir à des températures supérieures à leurs points de surfusion. À l’automne 2012, lorsque les œufs ont été placés sur le terrain, < 10% ont survécu dans les Laurentides comparativement à > 70% plus au sud. Au printemps 2013, aucun parasitisme n’a été détecté dans la population. Cependant, les froids qui ont balayé les Laurentides l’hiver précédent ont vraisemblablement causé le déclin de cette population. Cette étude démontre que les œufs de L. fiscellaria peuvent succomber à des températures supérieures à leurs points de surfusion sur le terrain.

Type
Behaviour and Ecology
Creative Commons
Parts of this are a work of Her Majesty the Queen in Right of Canada.
Copyright
© Entomological Society of Canada 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Hervé Colinet

References

Agresti, A. 2013. Categorical data analysis, third edition. John Wiley & Sons, Hoboken, New Jersey, United States of America.Google Scholar
Arsenault, J.E., Hébert, C., Tousignant, A., Berthiaume, R., and Bauce, É. 2015. L’arpenteuse de la pruche: une arrivée remarquée. Bulletin of Conservation, 2014–2015: 59.Google Scholar
Bale, J.S. 1996. Insect cold hardiness: a matter of life and death. European Journal of Entomology, 93: 369382.Google Scholar
Bale, J.S. 2010. Implications of cold-tolerance for pest management. In Low temperature biology of insects. Edited by Denlinger, D.L. and Lee, R.E.. Cambridge University Press, London, United Kingdom. Pp. 342373.CrossRefGoogle Scholar
Bale, J.S. and Hayward, A.L. 2010. Insect overwintering in a changing climate. Journal of Experimental Biology, 213: 980994.CrossRefGoogle Scholar
Balling, R.C., Michaels, P.J., and Knappenberger, P.C. 1998. Analysis of winter and summer warming rates in gridded temperature time series. Climate Research, 9: 175181.CrossRefGoogle Scholar
Battisti, A., Stastny, M., Buffo, E., and Larsson, S. 2006. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology, 12: 662671.CrossRefGoogle Scholar
Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques, A., et al. 2005. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological Applications, 15: 20842096.CrossRefGoogle Scholar
Bordeleau, C. 1997. Insectes et maladies des arbres. Ministères des Ressources naturelles, Direction de la conservation des forêts, Division des relevés et des diagnostics, Québec, Québec, Canada. Pp. 710.Google Scholar
Bordeleau, C. 1998. Insectes, maladies et feux dans les forêts québécoises. Ministères des Ressources naturelles, Direction de la conservation des forêts, Division des relevés et des diagnostics, Québec, Québec, Canada. Pp. 1214.Google Scholar
Bradshaw, W.E. and Holzappel, C.M. 2010. Insects at not so low temperature: climate change in the temperate zone and its biotic consequences. In Low temperature biology of insects. Edited by Denlinger, D.L. and Lee, R.E.. Cambridge University Press, London, United Kingdom. Pp. 242275.CrossRefGoogle Scholar
Bush, E.J., Loder, J.W., Mortsch, T.S., and Cohen, S.J. 2014. An overview of Canada’s changing climate. In Canada in a changing climate: sector perspectives on impacts and adaptation. Edited by Warren, F.J. and Lemmen, D.S.. Government of Canada, Ottawa, Ontario, Canada. Pp. 2354.Google Scholar
Carroll, A.L., Taylor, S.W., Régnière, J., and Safranyik, L. 2004. Effects of climate change on range expansion by the mountain pine beetle. In Proceedings of the mountain pine beetle symposium: challenger and solutions, Kelona, British Columbia, 30–31 October 2003. Edited by Shore, T.L., Brooks, J.E., and Stone, J.E.. Information Report BC-X-399. Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, Canada. Pp. 223232.Google Scholar
Chabot, M., Bordeleau, C., and Aubin, É. 2001. Insectes, maladies et feux dans les forêts québécoises en 2001. Ministères des Ressources naturelles, Direction de la conservation des forêts, Division des relevés et des diagnostics, Ville de Québec, Québec, Canada. Pp. 1216.Google Scholar
Colinet, H., Sinclair, B.J., Vernon, P., and Renault, D. 2015. Insect in fluctuating thermal environments. Annual Review of Entomology, 60: 123140.CrossRefGoogle ScholarPubMed
Cooke, B.J. and Roland, J. 2003. The effect of winter temperature on forest tent caterpillar (Lepidoptera: Lasiocampidae) egg survival and population dynamics in northern climates. Environmental Entomologist, 32: 299311.CrossRefGoogle Scholar
Crozier, L. 2014. Warmer winters drive butterfly range expansion by increasing survivorship. Ecology, 85: 231241.CrossRefGoogle Scholar
Delisle, J., Bernier-Cardou, M., and Laroche, G. 2016. Reproductive performance of the hemlock looper, Lambdina fiscellaria, as a function of temperature and population origin. Entomologia Experimentalis et Applicata, 161: 219231.CrossRefGoogle Scholar
Delisle, J., Labrecque, A., Royer, L., Bernier-Cardou, M., Bauce, É., Charest, M., et al. 2013. Impact of short-term exposure to low subzero temperatures on egg hatch in the hemlock looper, Lambdina fiscellaria. Entomologia Experimentalis et Applicata, 149: 202218.CrossRefGoogle Scholar
Delisle, J., Royer, L., Bernier-Cardou, M., Bauce, É., and Labrecque, A. 2009. The combined effect of photoperiod and temperature on egg dormancy in an island and a mainland population of the hemlock looper, Lambdina fiscellaria. Entomologia Experimentalis et Applicata, 133: 232243.CrossRefGoogle Scholar
Delisle, J., West, R.J., and Bowers, W.W. 1998. The relative performance of pheromone and light traps in monitoring the seasonal activity of both sexes of the eastern hemlock looper, Lambdina fiscellaria fiscellaria. Entomologia Experimentalis et Applicata, 89: 8798.CrossRefGoogle Scholar
Delisle-Boulianne, S., Boucher, Y., Bélanger, L., and Brière, M.H. 2011. Les premiers inventaires forestiers dans la réserve faunique des Laurentides: de précieuses sources d’information pour établir le portrait des forêts naturelles. Le Naturaliste Canadien, 135: 3848.Google Scholar
Environment Canada. 2018. Historical climate data [online]. Available from http://climate.weather.gc.ca/historical_data/search_historic_data_e.html [accessed 9 January 2019].Google Scholar
Evenden, M.L., Borden, J.H., van Sickle, G.A., and Gries, G. 1995. Development of a pheromone-based monitoring system for western hemlock looper (Lepidoptera: Geometridae): effect of pheromone dose, lure age, and trap type. Environmental Entomology, 24: 923932.CrossRefGoogle Scholar
Gries, G., Li, J., Gries, R., Slessor, K.N., Bowers, W.W., West, R.J., et al. 1991. 5, 11-dimethylheptadecane and 2, 5-dimethylheptadecane: sex pheromone components of the geometrid moth, Lambdina fiscellaria fiscellaria. Naturwissenschaften, 78: 315317.CrossRefGoogle Scholar
Hébert, C., Berthiaume, R., Dupont, A., and Auger, M. 2001. Population collapses in a forecasted outbreak of Lambdina fiscellaria (Lepidoptera: Geometridae) caused by spring egg parasitism by Telenomus spp. (Hymenoptera: Scelionidae). The Canadian Entomologist, 138: 114117.CrossRefGoogle Scholar
Hébert, C. and Jobin, L. 2001. L’arpenteuse de la pruche. Feuillet d’information CFL 4. Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des Laurentides, Sainte-Foy, Québec, Québec, Canada.Google Scholar
Intergovernmental Panel on Climate Change. 2013. Climate Change 2013. The Physical Science Basis. Contributions of Working Group 1 to the Fifth Assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Jepsen, J.U., Hagen, S.B., Ims, R.A., and Yoccoz, N.G. 2008. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. Journal of Animal Ecology, 77: 257264.CrossRefGoogle ScholarPubMed
Jobin, L.J. and Coulombe, C. 1988. The Multi-Pher® insect trap. Information Leaflet LFC24E. Forestry Canada, Quebec Region, Sainte-Foy, Québec, Québec, Canada.Google Scholar
Jobin, L.J. and Desaulnier, R. 1981. Results of aerial spraying in 1972 and 1973 to control the eastern hemlock looper (Lambdina fiscellaria (Guen.)) on Anticosti Island. Information Report LAU-X-49E. Environment Canada, Canadian Forestry Service, Laurentian Forest Research Centre, Sainte-Foy, Quebec, Canada.Google Scholar
Kenward, M.G. and Roger, J.H. 1997. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53: 983997.CrossRefGoogle ScholarPubMed
Kodra, E., Steinhaeuser, K., and Ganguly, A.R. 2011. Persisting cold extremes under 21st-century warming scenarios. Geophysical Research Letters, 38: 15.CrossRefGoogle Scholar
Leather, S.R., Walters, K.F.A., and Bale, J.S. 1993. The ecology of insect overwintering. Cambridge University Press, Cambridge, United Kingdom.CrossRefGoogle Scholar
Leblanc, M. and Bélanger, L. 2000. La sapinière vierge de la forêt Montmorency et de sa région: une forêt boréale distincte. Mémoire de recherche forestière 136. Ministères des Ressources naturelles, Québec, Québec, Canada.Google Scholar
Lee, R.E. 2010. A primer on insect cold-tolerance. In Low temperature biology of insects. Edited by Denlinger, D.L. and Lee, R.E.. Cambridge University Press, London, United Kingdom. Pp. 334.CrossRefGoogle Scholar
Legault, S., Hébert, C., Blais, J., Berthiaume, R., Bauce, É., and Brodeur, J. 2012. Seasonal ecology and thermal constraints of Telenomus spp. (Hymenoptera: Scelionidae), egg parasitoids of the hemlock looper (Lepidoptera: Geometridae). Environmental Entomology, 41: 12901301.CrossRefGoogle Scholar
McCulloch, C.E., Searle, S.R., and Neuhaus, J.M. 2008. Generalized, linear, and mixed Models, second edition. John Wiley & Sons, New York, New York, United States of America.Google Scholar
Otvos, I.S., Clarke, L.J., and Durling, D.S. 1979. A history of recorded eastern hemlock looper outbreaks in Newfoundland. Information Report N-X-179. Environment Canada, Canadian Forestry Service, Newfoundland Forest Research Centre, St. John’s, Newfoundland and Labrador, Canada.Google Scholar
Pelletier, G. and Piché, C. 2003. Species of Telenomus (Hymenoptera: Scelionidae) associated with the hemlock looper (Lepidoptera: Geometridae) in Canada. The Canadian Entomologist, 135: 2339.CrossRefGoogle Scholar
Rochefort, S., Berthiaume, R., Hébert, C., Charest, M., and Bauce, É. 2011. Effect of temperature and host tree on cold hardiness of hemlock looper eggs along a latitudinal gradient. Journal of Insect Physiology, 57: 751759.CrossRefGoogle ScholarPubMed
Sinclair, B.J., Williams, C.M., and Terblanche, J.S. 2012. Variation in thermal performance among insect populations. Physiological and Biochemical Zoology, 85, 594606.CrossRefGoogle ScholarPubMed
Virtanen, T., Neuvonen, S., and Nikula, A. 1998. Modelling topoclimatic patterns of egg mortality of Epirrita autumnata (Lepidoptera; Geometridae) with a geographical information system: predictions for current climate and warmer climate scenarios. Journal of Applied Ecology, 35: 311322.CrossRefGoogle Scholar
Westfall, P.H., Tobias, R.D., and Wolfinger, R.D. 2011. Multiple comparison and multiple tests using SAS, second edition SAS Institute, Cary, North Carolina, United States of America.Google Scholar
Williams, C.M., Hugh, A., Henry, L., and Sinclair, B.J. 2015. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biological Reviews, 90: 214235.CrossRefGoogle ScholarPubMed