Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-01T00:02:52.708Z Has data issue: false hasContentIssue false

EVOLUTION OF RELATIVE HUMIDITY AND TEMPERATURE WITHIN A CLOSED CHAMBER USED FOR ENTOMOLOGICAL STUDIES

Published online by Cambridge University Press:  31 May 2012

S. Marcandier
Affiliation:
Bioinsecticide Research Laboratory, Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Saskatchewan. Canada S7N 0W0
G.G. Khachatourians*
Affiliation:
Bioinsecticide Research Laboratory, Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Saskatchewan. Canada S7N 0W0
*
2 Author to whom correspondence should be addressed.

Abstract

A simple experimental device has been described for controlling relative humidity (RH) using saturated salt solutions. This device was suitable for studies requiring a 14–82% RH (± 3%) at 27 ± 0.7°C. The RH and temperature set points were not affected by the presence of grasshoppers. Perturbations of 1.5 min due to daily insect provisioning introduced a 9- to 60-min disturbance of the RH and temperature equilibria in the chambers containing NaCl and LiCl, and a 7.5-h disturbance in the MgCl2 chamber.

Résumé

Les enceintes décrites, contenant des solutions salines saturées, permettent un contrôle de ± 3% de l’humidité relative (HR) et de ± 1°C. Les valeurs de l’HR et de la température aux points d’équilibre ne sont pas modifiées par la présence des insectes. Les perturbations de ces deux paramètres, provoquées par l’alimentation quotidienne des insectes, sont éliminées très rapidement (9–60 min) dans les enceintes contenant du NaCl et du LiCl. La rééquilibration de l’HR est beaucoup plus lente (7.5 h) dans l’enceinte contenant du MgCl2 et des insectes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carr, D.S., and Harris, B.L.. 1949. Solutions for maintaining constant relative humidity. Ind. Eng. Chem. 41: 20142015.CrossRefGoogle Scholar
Doane, J.F., and Allan, R.K.. 1968. A chamber for studying the effect of relative humidity and soil moisture on insect eggs. Can. Ent. 100: 358362.CrossRefGoogle Scholar
Hart, M.P., and MacLeod, D.M.. 1955. An apparatus for determining the effects of temperature and humidity on germination of fungus spores. Can. J. Bot. 33: 289292.CrossRefGoogle Scholar
Marcandier, S., and Khachatourians, G.G.. 1987. Susceptibility of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae), to Beauveria bassiana (Bals.) Vuillemin (Hyphomycete): influence of relative humidity. Can. Ent. 119: 901907.CrossRefGoogle Scholar
Martin, S. 1962. The control of conditioning atmospheres by saturated salt solutions. J. Sci. Instrum. 39: 370372.CrossRefGoogle Scholar
O'Brien, F.E.M. 1948. The control of humidity by saturated salt solutions. J. Sci. Instrum. 25: 7376.CrossRefGoogle Scholar
Schein, R.D. 1964. Comments on the moisture requirements of fungus germination. Phytopathology 54: 1427.Google Scholar
Wexler, A., and Brombacher, W.G.. 1951. Methods of measuring humidity and testing hygrometers. National Bureau Standards Circ. 512. 18 pp.Google Scholar
Wexler, A., and Hasegawa, S.. 1954. Relative humidity–temperature relationships of some saturated salt solutions in the temperature range 0° to 50°C. J. Res. Natn. Bur. Stand. 53: 1926.CrossRefGoogle Scholar
Winston, P.W., and Bates, D.H.. 1960. Saturated solutions for the control of humidity in biological research. Ecology 41: 232237.CrossRefGoogle Scholar