Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T15:10:56.080Z Has data issue: false hasContentIssue false

EVALUATION OF THE REPELLENT EFFECTS OF A NEEM INSECTICIDE ON FORAGING HONEY BEES AND OTHER POLLINATORS

Published online by Cambridge University Press:  31 May 2012

Ken Naumann
Affiliation:
Department of Plant Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
Rob W. Currie
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
Murray B. Isman
Affiliation:
Department of Plant Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4

Abstract

A standardized, oil-free neem (Azadirachta indica A. Juss) seed extract (NSE) was tested for repellency to honey bees using a feeding-dish choice bioassay, and to honey bees and other pollinators in field applications on blooming canola. Foraging honey bee workers were able to discriminate between untainted sugar syrup and syrup containing formulated NSE at concentrations as low as 0.1 ppm azadirachtin, the principal active ingredient of NSE. However there were no significant differences in the numbers of foraging bees collected in neem-treated, solvent-treated, or untreated canola plots. Other pollinator. species present were similarly unaffected. Our results suggest that honey bees may be successfully utilized in blooming crops that have been treated with doses of NSE sufficient to control phytophagous insect pests. The results of this study also suggest that using feeding-dish bioassays to screen potential repellent compounds, although demonstrating the ability of honey bees to detect compounds, may not yield similar results in the field.

Résumé

Les effets repoussants d’un extrait standardisé sans huile de graine de margousier (Azadirachta indica A. Juss) (NSE) ont été éprouvés en laboratoire sur des abeilles mises en présence de choix d’aliments et éprouvés aussi en nature sur des abeilles et d’autres pollinisateurs libérés dans des champs de canola en fleurs. Les ouvrières des abeilles étaient capables de faire la distinction entre du sirop de sucre non traité et du sirop contenant une dose de NSE à des concentrations même très faibles, 0,1 ppm d’azadiractine, le principal ingrédient actif du NSE. Cependant, il n’y avait pas de différence significative entre le nombre d’abeilles en quête de nourriture récoltées dans des champs traités au NSE, des champs traités au solvant et des champs non traités de canola. Les autres espèces de pollinisateurs présentes ne manifestaient pas non plus de préférence. Nos résultats indiquent que les abeilles peuvent être utilisées efficacement comme pollinisateurs dans des cultures en fleurs qui ont été traitées à des doses suffisantes de NSE pour contrôler les insectes phytophages. Les résultats de cette étude indiquent également que même si les données obtenues en laboratoire mettent en relief la capacité des abeilles de déceler les produits au cours de tests de choix d’aliments destinés à déterminer quels produits peuvent être repoussants, ces données peuvent différer des résultats obtenus sur le terrain.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, E.L. 1981. Repellents reduce insecticidal kills of honeybees. Proceedings of the 28th International Congress of Apiculture: 305310.Google Scholar
Atkins, E.L. 1992. Poisoning of honey bees. pp. 1153–1208 in Graham, J.M. (Ed.), The Hive and the Honey Bee. Dadant and Sons Inc., Hamilton, IL. 1324 pp.Google Scholar
Atkins, E.L., Macdonald, R.L., McGovern, T.P., Beroza, M., and Greenwood-Hale, E.A.. 1975. Repellent additives to reduce pesticide hazards to honeybees: Laboratory testing. Journal of Apicultural Research 14: 8597.CrossRefGoogle Scholar
Balandrin, M.F., Lee, S.M., and Klocke, J.A.. 1988. Biologically active volatile organosulphur compounds from seeds of the neem tree, Azadirachta indica (Meliaceae). Journal of Agricultural and Food Chemistry 36: 10481054.CrossRefGoogle Scholar
Crane, E., and Walker, P.. 1983. The Impact of Pest Management on Bees and Pollination. Tropical Development and Research Institute, London, UK. 199 pp.Google Scholar
DeBach, P., and Rosen, D.. 1991. Biological Control by Natural Enemies. Cambridge University Press, New York, NY. 440 pp.Google Scholar
Gupta, M. 1987. Essential oils: A new source of bee repellents. Chemistry and Industry 10: 162163.Google Scholar
Hoelmer, K.A., Osborne, L.S., and Yokomi, R.K.. 1990. Effects of neem extracts on beneficial insects in greenhouse culture. pp. 100–105 in Locke, J.C., and Lawson, R.H. (Eds.), Neem's Potential in Pest Management Programs. Proceedings of the United States Department of Agriculture Neem Workshop. U.S.D.A. Agricultural Research Service 86: 136 pp.Google Scholar
Isman, M.B. 1994. The effects of neem on Lepidoptera. In Schmutterer, H. (Ed.), The Neem Tree — A Source of Unique Products for Pest Management and Other Purposes. In press.Google Scholar
Isman, M.B., Koul, O., Luczynski, A., and Kaminski, J.. 1990. Insecticidal and antifeedant bioactivities of neem oils and the relationship to azadirachtin content. Journal of Agricultural and Food Chemistry 38: 14041411.CrossRefGoogle Scholar
Kleeberg, H. 1992. The neem-extractor and the biological activity of the product NeemAzal-S. pp. 75–85 in Otto, D., and Weber, B. (Eds.), Insecticides: Mechanisms of Action and Resistance. Intercept Ltd., Andover, Hants, UK. 499 pp.Google Scholar
Koul, O., Isman, M.B., and Ketkar, C.M.. 1990. Properties and uses of neem, Azadirachta indica. Canadian Journal of Botany 68: 111.CrossRefGoogle Scholar
Larson, R.O. 1990. Commercialization of the neem extract Margosan-O in a USDA collaboration. pp. 23–28 in Locke, J.C., and Lawson, R.H. (Eds.), Neem's Potential in Pest Management Programs. Proceedings of the United States Department of Agriculture Neem Workshop. U.S.D.A. Agricultural Research Service 86: 136 pp.Google Scholar
McCloskey, C., Arnason, J.T., Donskov, N., Chenier, R., Kaminski, J., and Philogène, B.J.R.. 1993. Third trophic level effects of azadirachtin. The Canadian Entomologist 125: 163165.CrossRefGoogle Scholar
Pike, K.S., Mayer, D.F., Glazer, M., and Kious, C.. 1982. Effects of permethrin on mortality and foraging behavior of honey bees in sweet corn. Environmental Entomology 11: 951953.CrossRefGoogle Scholar
Schmutterer, H. 1990. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology 35: 271297.CrossRefGoogle ScholarPubMed
Schmutterer, von H., and Holst, H.. 1987. Untersuchungen über die Wirkung des angereicherten und formulierten Niemsamenextrakts AZT-VR-K auf die Honigbiene Apis mellifera L. Journal of Applied Entomology 103: 208213.CrossRefGoogle Scholar
Sharma, G.K., Czoppelt, C., and Rembold, H.. 1980. Further evidence of insect growth disruption by neem seed fractions. Journal of Applied Entomology 90: 439444.Google Scholar
Solomon, M.G., and Hooker, K.J.M.. 1989. Chemical repellents for reducing pesticide hazard to honeybees in apple orchards. Journal of Apicultural Research 28: 223227.CrossRefGoogle Scholar
Stark, J.D. 1992. Comparison of the impact of a neem seed-kernel extract formulation, ‘Margosan-O’ and Chlorpyrifos on non-target invertebrates inhabiting turf grass. Pesticide Science 36: 293300.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, NJ. 718 pp.Google Scholar