Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T00:14:00.690Z Has data issue: false hasContentIssue false

EVALUATION OF INUNDATIVE RELEASES OF TRICHOGRAMMA EXIGUUM (HYMENOPTERA: TRICHOGRAMMATIDAE) FOR SUPPRESSION OF NANTUCKET PINE TIP MOTH (LEPIDOPTERA: TORTRICIDAE) IN PINE (PINACEAE) PLANTATIONS

Published online by Cambridge University Press:  31 May 2012

David B. Orr*
Affiliation:
Department of Entomology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, USA 27695-7613
Charles P-C. Suh
Affiliation:
Department of Entomology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, USA 27695-7613
Kenneth W. Mccravy
Affiliation:
Department of Entomology, University of Georgia, Athens, Georgia, USA 30602-2603
C. Wayne Berisford
Affiliation:
Department of Entomology, University of Georgia, Athens, Georgia, USA 30602-2603
Gary L. Debarr
Affiliation:
Forestry Sciences Laboratory, Southern Research Station, USDA Forest Service, Athens, Georgia, USA 30602-2044
*
1 Author to whom all corresponding should be addressed (E-mail: [email protected]).

Abstract

Inundative releases of Trichogramma exiguum Pinto and Platner were evaluated for suppression of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock), in first-year loblolly pine, Pinus taeda L., plantations. Three releases, spaced 7 d apart, were made in three 0.4-ha plots during second-generation R. frustrana egg deposition. Each release included three cohorts of T. exiguum developmentally separated by 25 degree-days. Mean ± SD field release rate for each cohort was 328 238 ± 88 379 females/ha. Mean T. exiguum emergence under laboratory conditions for released cohorts was 96 ± 2%, with 74 ± 3% females, of which 1 ± 1% of females displayed brachyptery; female longevity was 18 ± 3 d. Field emergence averaged 96 ± 4%. Parasitism of R. frustrana eggs was significantly increased, ranging from 40 ± 19 to 73 ± 22% in T. exiguum-treated plots and 17 ± 17 to 67 ± 21% in control plots. Data from all treated plots combined showed R. frustrana egg survival (hatching) was significantly reduced by 46%, and larval populations were significantly reduced by 60%. There was no significant difference in the percentage of terminals damaged between T. exiguum-treated (31 ± 16%) and control plots (45 ± 10%); however, length of terminal damage was significantly lower in treated plots. The percentage of damage to top whorl shoots was significantly lower in T. exiguum-treated plots compared with control plots, but there was no significant difference in length of tunneling damage. Damage to remaining shoots was not significantly different between T. exiguum-treated and control plots. Microhabitat significantly influenced both mean maximum and minimum temperature and the number of consecutive hours per day that were at or above 35 °C (critical temperature for T. exiguum survival). Soil surface with no cover had the greatest number of hours at or above 35 °C, followed by soil surface with herbaceous cover, and canopies of small trees (0.4 m tall). Canopy habitats in larger trees (0.9–1.8 m tall) had the most moderate temperature conditions. Parasitoid emergence was significantly reduced in response to increasing number of consecutive hours at or above 35 °C. Predation of parasitoids prior to emergence was significantly affected by microhabitat and by the length of time capsules were in the field before T. exiguum emergence (i.e., cohort number).

Résumé

La libération massive de Trichogramma exiguum Pinto et Platner comme méthode de lutte contre le Perce-rameau du pin, Rhyacioma frustrana (Comstock), a été évaluée dans des plantations de pins taeda, Pinus taeda L., d’un an. Trois traitements ont été administrés à 7 jours d’intervalle dans trois parcelles de terrain de 0,4 ha au cours de la ponte de la deuxième génération de R. frustrana. Àchaque traitement, des individus de trois cohortes de T. exiguum séparées par 25 degrés-jours étaient libérés. Le taux de libération pour chaque cohorte, moyenne ± écart type, était de 328 238 ± 88 379 femelles/ha. L’émergence moyenne de T. exiguum dans des conditions de laboratoire chez les cohortes relâchées a été de 96 ± 2%, dont 74 ± 3% de femelles, parmi lesquelles 1 ± 1% étaient brachyptères; la longévité des femelles était de 18 ± 3 jours. En nature, l’émergence moyenne a été de 96 ± 4%. Les parasitisme des oeufs de R. frustrana a augmenté de façon significative, allant de 40 ± 19 à 73 ± 22% dans les parcelles traitées et de 17 ± 17 à 67 ± 21% dans les parcelles témoins. Les données de toutes les parcelles traitées combinées indiquent que la survie des oeufs de R. frusrana (à l’éclosion) est réduite significativement, de 46%, et que les populations de larves sont réduites significativement aussi, de 60%. Il n’y avait pas de différence significative dans le pourcentage de flèches attaquées par la tordeuse entre les parcelles traitées au moyen de T. exiguum (31 ± 16%) et les parcelles témoins (45 ± 10%), mais la longueur des tunnels creusés dans les flèches était significativement plus courte dans les parcelles traitées. Le pourcentage de pousses attaquées du premier verticille était significativement plus faible dans les parcelles traitées que dans les parcelles témoins, mais il n’y avait pas de différence significative dans la longueur des tunnels. Les dommages aux autres pousses ne différaient pas significativement dans les parcelles traitées et les parcelles témoins. Le microhabitat influençait fortement le maximum et le minimum moyens de température et le nombre d’heures consécutives dans la journée où la température était égale ou supérieure à 35 °C (température seuil de la survie de T. exiguum). Les surfaces de sol sans couverture restaient exposées au plus grand nombre d’heures à 35 °C ou plus, suivies des sols avec couverture d’herbacées, puis des couvertures de petits arbres (0,4 m de hauteur). Le feuillage des grands arbres (0,9 à 1,8 m de hauteur) offrait les conditions de température les plus modérées. L’émergence du parasitoïde était fortement réduite en réaction au nombre progressivement plus grand d’heures à 35 °C ou plus. La prédation des parasitoïdes avant l’émergence était significativement affectée par le microhabitat et par la durée de séjour des capsules en nature avant l’émergence de T. exiguum (i.e., le rang de la cohorte).

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andow, D.A., Klacan, G.C., Bach, D., Leahy, T.C. 1995. Limitations of Trichogramma nubilale (Hymenoptera: Trichogrammatidae) as an innundative biological control of Ostrinia nubilalis (Lepidoptera: Crambidae). Environmental Entomologist 24: 1353–7Google Scholar
Berisford, C.W. 1988. The Nantucket pine tip moth. pp. 141–61 in Berryman, A.A. (Ed.), Dynamics of forest insect populations: patterns, causes, implications. New York: Plenum Publishing Corp.CrossRefGoogle Scholar
Berisford, C.W., Godbee, J.F. Jr., Ross, D.W. 1989. Impact of pine tip moth control, weed control, and fertilizer on growth and form of loblolly pine. pp. 130–6 in Alfaro, R.I., Glover, S.G. (Eds.), Insects Affecting Reforestation: Biology and Damage, Proceedings of the IUFRO Working Group, Insects Affecting Reforestation. Vancouver: Pacific Forestry Centre, Forestry CanadaGoogle Scholar
Cardé, R.T., Minks, A.K. 1995. Control of moth pests by mating disruption: successes and constraints. Annual Review of Entomology 40: 559–85CrossRefGoogle Scholar
Cerutti, F., Bigler, F. 1991. Methods for the quality evaluation of Trichogramma evanescens Westw. used against the European corn borer. pp. 119–26 in Proceedings of the 5th Workshop of the Global Iobc Working Group “Quality Control of Mass Reared Organisms,” Wageningen, The Netherlands, March 1991Google Scholar
Fettig, C.J., Berisford, C.W. 1999. Nantucket pine tip moth phenology in eastern North Carolina and Virginia: implications for effective timing of insecticide applications. Southern Journal of Applied Forestry 23: 30–8CrossRefGoogle Scholar
Fox, R.C., Anderson, N.H., Garner, S.C., Walker, A.I. 1972. Larval head capsules of the Nantucket pine tip moth. Annals of the Entomological Society of America 65: 513–4CrossRefGoogle Scholar
Garguillo, P.M., Berisford, C.W. 1983. Life tables for the Nantucket pine tip moth, Rhyacionia frustrana (Comstock), and the pitch pine tip moth, Rhyacionia rigidana (Fernald) (Lepidoptera: Tortricidae). Environmental Entomology 12: 1391–402CrossRefGoogle Scholar
Harrison, W.W., King, E.G., Outzs, J.D. 1985. Development of Trichogramma exiguum and T. pretiosum at five temperature regimes. Environmental Entomology 14: 118–21CrossRefGoogle Scholar
Kabiri, F., Frandon, J., Voegele, J., Hawlitzky, N., Stengel, M. 1990. Evolution of a strategy for inundative releases of Trichogramma brassicae Bezd. (Hym Trichogrammatidae) against the European corn borer, Ostrinia nubilalis Hbn. (Lep. Pyralidae). pp. 512in Proceedings, ANPP 2nd International Conference on Agricultural Pests, Versailles, 4–6 December 1990 [In French, translated by Matteson, P.]Google Scholar
Li, L-Y. 1994. Worldwide use of Trichogramma for biological control on different crops: a survey. pp. 3754in Wajnberg, E., Hassan, S.A. (Eds.), Biological control with egg parasitoids. Wallingford: CAB InternationalGoogle Scholar
McCravy, K.W. 1998. Biology of parasitoids of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock). Ph.D. dissertation, University of Georgia, AthensGoogle Scholar
McCravy, K.W., Berisford, C.W. 1998. Parasitism by Trichogramma spp. (Hymenoptera: Trichogrammatidae) in relation to Nantucket pine tip moth (Lepidoptera: Tortricidae) egg density and location. Environmental Entomology 27: 355–9CrossRefGoogle Scholar
Niwa, C.G., Daterman, G.E., Sartwell, C., Sower, L.L. 1988. Control of Rhyacionia zozana (Lepidotera: Tortricidae) by mating disruption with synthetic sex pheromone. Environmental Entomology 17: 593–5CrossRefGoogle Scholar
Orr, D.B. 1988. Scelionid wasps as biological control agents: a review. Florida Entomologist 71: 506–28CrossRefGoogle Scholar
Orr, D.B. 1993. Biological control tactics for European corn borer. pp. 5162in Proceedings of the Illinois Crop Protection Workshop, 3–5 March 1993, Champaign, IllinoisGoogle Scholar
Pritchett, W.L., Smith, W.H. 1972. Fertilizer response in young pine plantations. Proceedings of the Soil Science Society of America 36: 660–3CrossRefGoogle Scholar
Ross, D.W., Berisford, C.W. 1990. Nantucket pine tip moth (Lepidoptera: Tortricidae) response to water and nutrient status of loblolly pine. Forest Science 36: 719–33Google Scholar
SAS Institute Inc. 1996. SAS/STAT user's guide, release 6.12. Cary: SAS Institute Inc.Google Scholar
Schultz, R.P. 1997. Loblolly pine (Pinus taeda L.): the ecology and culture of loblolly pine. USDA Forest Service Agricultural Handbook 713Google Scholar
Shetty, P. 2000. Assessment of Trichogramma wasps as biological control agents for suppression of Platynota idauesalis Walker in North Carolina apples. Ph.D. dissertation, North Carolina State University, Raleigh.Google Scholar
Smith, S.M. 1996. Biological control with Trichogramma: advances, successes, and potential of their use. Annual Review of Entomology 41: 375406CrossRefGoogle ScholarPubMed
Suh, C P-C, Orr, D.B., Van Duyn, J.W. 1998. Reevaluation of Trichogramma releases for suppression of heliothine pests in cotton. pp. 10981101in Proceedings of Beltwide Cotton Production and Research Conference. Memphis: National Cotton CouncilGoogle Scholar
van Hamburg, H., Hassell, M.P. 1984. Density dependence and the augmentative release of egg parasitoids against graminaceous stalk borers. Ecological Entomology 9: 101–8CrossRefGoogle Scholar
Wajnberg, E., Hassan, S.A. (Eds). 1994. Biological control with egg parasitoids. Oxon: CAB InternationalGoogle Scholar
Yates, H.O. III. 1966. Rhyacionia egg parasitism by Trichogramma minutum Riley. Journal of Economic Entomology 59: 967–9CrossRefGoogle Scholar
Yates, H.O. III, Overgaard, N.A., Koerber, T.W. 1981. Nantucket pine tip moth. USDA Forest Service Forest Insect and Disease Leaflet 70Google Scholar