Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T10:43:01.613Z Has data issue: false hasContentIssue false

EVALUATION OF INSECTICIDES FOR PROTECTION OF WHEAT AGAINST DAMAGE BY THE WHEAT MIDGE, SITODIPLOSIS MOSELLANA (GÉHIN) (DIPTERA: CECIDOMYIIDAE)1

Published online by Cambridge University Press:  31 May 2012

R.H. Elliott
Affiliation:
Agriculture Canada Research Station, 107 Science Crescent, Saskatoon, Saskatchewan, Canada S7N 0X2

Abstract

The efficacies of cypermethrin, deltamethrin, permethrin, endosulfan, methoxychlor, carbofuran, chlorpyrifos, dimethoate, and malathion were evaluated against the wheat midge, Sitodiplosis mosellana (Géhin). Methods are described for evaluating damage and protection in individually collected wheat heads and whole plants. Weighted values from whole plants provided the best indication of kernel protection and yield response.

Whole plants contained three main types of wheat heads (primary heads, first tillers, and second tillers) which differed in their frequencies, kernel numbers, and developmental times. The latter indicated that the chronology of midge attack, status of midge infestations during spraying, and spray coverage also differed in the head types.

Insecticides provided different levels of kernel protection within and among the various head types. The majority of primary heads emerged before spraying and harbored midge eggs at spraying. In these wheat heads, chlorpyrifos, endosulfan, and malathion provided significantly better kernel protection (60–75%) than permethrin, deltamethrin, and cypermethrin (<7%). The results suggested that the more effective kernel protectants permeated the spikelet and controlled the eggs and/or newly hatched larvae. Kernel protection in the primary heads was closely related to insecticide volatility. Conditions were different in most first tillers and second tillers which emerged after spraying. In these wheat heads, poor spray coverage and short residual activity against adult midge appeared to limit kernel protection by all insecticides.

Résumé

On a évalué les efficacités de la cyperméthrine, de la deltaméthrine, de la perméthrine, de l’endosulfan, du méthoxychlore, du carbofurant, du chlorpyrifos, du diméthoate et du malathion contre la cécidomyie du blé, Sitodiplosis mosellana (Géhin). L’auteur décrit des méthodes d’évaluation des dégâts et de la protection dans des épis et des plants entiers de blé prélevés individuellement. Les valeurs pondérées pour les plants entiers donnent la meilleure indication de la protection des grains et du rendement.

Les plants entiers contiennent trois types principaux d’épis (maîtres-brins, premières tiges et deuxièmes tiges) qui diffèrent dans leurs fréquences d’apparition, la densité des grains et l’époque de développement. Ce dernier facteur indique que la chronologie des attaques du ravageur, l’état des infestations pendant la pulvérisation et la couverture de pulvérisation diffèrent également dans les divers types d’épis.

Les insecticides offrent divers niveaux de protection des grains dans un même type d’épi et d’un type à l’autre. La majorité des maîtres-brins émergent avant la pulvérisation et hébergent déjà des oeufs de cécidomyie à la pulvérisation. Dans ces épis, le chlorpyrifos, l’endosulfan et le malathion protègent significativement mieux les grains (60–75%) que la perméthrine, la deltaméthrine et la cyperméthrine (<7%). Les résultats donnent à penser que les phytoprotecteurs plus efficaces des grains imprègnent l’épillet et détruisent les oeufs et les larves fraîchement écloses. La protection des grains dans les maîtres-brins est fortement corrélée à la volatilité des insecticides. Les conditions sont différentes dans la plupart des deuxièmes et troisièmes tiges qui émergent après la pulvérisation. Dans les épis de ces tiges, une couverture insuffisante de la pulvérisation et une brève activité résiduelle contre le ravageur semblent limiter la protection des grains assurée par tous les insecticides.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Barker, P.S. 1984. Distribution of wheat midge damage on wheat in Manitoba in 1984. Proc. ent. Soc. Manitoba 40: 2529.Google Scholar
Barker, P.S. 1986. Statistical distribution of damage on wheat heads caused by the wheat midge, Sitodiplosis mosellana (Géhin) in Manitoba. Can. Ent. 118: 10751077.CrossRefGoogle Scholar
Basedow, T. 1980. Untersuchungen zur Prognose des Aftretens der Weizengallmücken Contarinia tritici (Kirby) and Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Z. ang Ent. 90: 292299.CrossRefGoogle Scholar
Basedow, T., and Schutte, F.. 1973. Neue Untersuchungen uber Eiablage, wirtschaftliche Schadensscheivelle und Bekampfung der Weizengallmucken (Dipt.: Cecidomyidae). Z. ang. Ent. 73: 238251.CrossRefGoogle Scholar
Dexter, J.E., Preston, K.R., Cooke, L.A., Morgan, B.C., Kruger, J.E., Kilborn, R.H., and Elliott, R.H.. 1987. The influence of orange wheat blossom midge (Sitodiplosis mosellana Géhin) damage on hard red spring wheat quality and the effectiveness of insecticide treatments. Can. J. Plant Sci. 67: 697712.CrossRefGoogle Scholar
Doane, J.F., Olfert, O.O., and Mukerji, M.K.. 1987. Extraction precision of sieving and brine flotation for removal of wheat midge Sitodiplosis mosellana (Diptera, Cecidomyiidae) cocoons and larvae from soil. J. econ. Ent. 80: 268271.CrossRefGoogle Scholar
Larsson, H. 1978. Control experiments against wheat blossom midges and the frit fly in Skane in 1977. pp. 149157in Bulletin of the Institute for Plant and Forest Protection, Uppsala, Sweden. [English translation]Google Scholar
Lescar, L. 1984. Current practice in integrated cereal pest and disease control in north-western Europe. pp. 763772in Proceedings of the 9th British Crop Protection Conference — Pests and Diseases.Google Scholar
Mukerji, M.K., Olfert, O.O., and Doane, J.F.. 1988. Development of sampling designs for egg and larval populations of the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in wheat. Can. Ent. 120: 497505CrossRefGoogle Scholar
Neter, J., Wasserman, W., and Kutner, M.H.. 1983. Applied Linear Regression Models. R.D. Irwin, Inc., Homewood, IL. 547 pp.Google Scholar
Oakley, J.N. 1981. Wheat blossom midges. Ministry of Agriculture, Fisheries and Food, U.K. Leaflet 788. 6 pp.Google Scholar
Olfert, O.O., Mukerji, M.K., and Doane, J.F.. 1985. Relationship between infestation levels and yield loss caused by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in spring wheat in Saskatchewan. Can. Ent. 117: 593598.CrossRefGoogle Scholar
SAS Institute. 1985. SAS User's Guide: Statistics, 5th ed. SAS Institute, Cary, NC. 956 pp.Google Scholar
Teetes, G.L., Becerra, M.I., and Peterson, G.C.. 1986. Sorghum midge (Diptera: Cecidomyiidae) management with resistant sorghum and insecticide. J. econ. Ent. 79: 10911095.CrossRefGoogle Scholar
Worthing, C.R. (Ed.). 1979. The Pesticide Manual — A World Compendium — British Crop Protection Council, 6th ed. 655 pp.Google Scholar
Worthing, C.R. (Ed.). 1987. The Pesticide Manual — A World Compendium — British Crop Protection Council, 8th ed. 1081 pp.Google Scholar
Wright, A.T., and Doane, J.. 1987. Wheat midge infestation of spring cereals in northeastern Saskatchewan. Can. J. Plant Sci. 67: 117120.CrossRefGoogle Scholar
Young, W.R., and Teetes, G.L.. 1977. Sorghum entomology. Annu. Rev. Ent. 22: 193218.CrossRefGoogle Scholar