Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T10:38:30.610Z Has data issue: false hasContentIssue false

ESTIMATING ATTACK AND BROOD TOTALS AND DENSITIES OF THE MOUNTAIN PINE BEETLE IN INDIVIDUAL LODGEPOLE PINE TREES

Published online by Cambridge University Press:  31 May 2012

L. Safranyik
Affiliation:
Canadian Forestry Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5

Abstract

A method was developed for estimating attack and brood totals of the mountain pine beetle in part or all of the infested bole of individual lodgepole pine trees. The method requires measurement of tree height, tree diameter at 1.37 m, and maximum height of attack, and tallying of brood and attacks on paired 20 cm by 30 cm samples centered at 1.22 m on the bole. Attack and brood totals are estimated in two ways: (1) as a product of the variables (a) total bole surface area, (b) proportion of bole surface area infested, and (c) mean attack/brood density; and (2) regression on the combined variables of tree diameter, infested height, and attack/brood density at 1.22 m on the bole. An approach to developing variance estimates for brood and attack totals is discussed.

Résumé

On a mis au point une méthode pour évaluer les attaques et les pontes du dendroctone du pin ponderosa dans une partie ou la totalité du fût infesté de pins lodgepoles. La méthode exige de mesurer la hauteur de l’arbre, le diamètre de l’arbre à une hauteur de 1,37 m, la hauteur maximale de l’attaque, et de faire le total des pontes et des attaques sur des échantillons jumelés de 20 cm × 30 cm prélevés à 1,22 m de hauteur sur le fût. Les attaques et les pontes sont évaluées de deux façons : (1) comme produit des variables (a) surface totale du fût, (b) proportion de la surface du fût infestée et (c) densité moyenne des attaques/pontes; et (2) régression des variables combinées du diamètre de l’arbre, de la hauteur de l’arbre infestée et de la densité des attaques/pontes à une hauteur de 1,22 m sur le fût. L’auteur examine une façon d’obtenir des estimations de variance pour l’ensemble des attaques et des pontes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bedard, W.D., and Terrell, T.T.. 1938. A method of predicting the trend of mountain pine beetle infestations in western white pine. USDA For. Serv., For. Insect Lab., Coeur d'Alene, Idaho. Mimeo. Rep. 8 pp.Google Scholar
Berryman, A.A., Demars, C.J. Jr., and Stark, R.W.. 1979. The development of sampling methods for within-tree populations of the western pine beetle. pp. 33–36 in Stark, R.W., and Dahlsten, D.L. (Eds.), Studies on the Population Dynamics of the Western Pine Beetle, Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae). Univ. California, Div. Agric. Sciences. 173 pp.Google Scholar
Carlson, R.W., and Cole, W.E.. 1965. A technique for sampling populations of the mountain pine beetle. USDA For. Serv. Int. Mtn. For. Range Exp. Stn., Res. Rap. INT-20. Ogden, Utah.13 pp.Google Scholar
Coulson, R.N., Pulley, P.E., Foltz, J.L., and Martin, W.C.. 1976. Procedural guide for quantitatively sampling within-tree populations of Dendroctonus frontalis. The Texas Agricultural Experiment Station, Texas A and M University, College Station, Texas. MP-1267, 26 pp.Google Scholar
Furniss, M.M. 1962. Infestation patterns of Douglas-fir beetle in standing and windthrown trees in southern Idaho. J. econ. Ent. 55: 486491.CrossRefGoogle Scholar
Golding, D.L., and Hall, O.F.. 1961. Test of precision of cubic foot tree volume equations on aspen, jack pine and white spruce. For. Chron. 37: 123132.CrossRefGoogle Scholar
Honer, T.G. 1965 a. Volume distribution in individual trees. Pulp and Paper Magazine of Canada. Nov., 5 pp.Google Scholar
Honer, T.G. 1965 b. A new total cubic foot volume function. For. Chron. 41: 476493.CrossRefGoogle Scholar
Knight, F.B. 1959. Measuring trends of Black Hills beetle infestations. USDA For. Serv. Res. Note 37. 6 pp.Google Scholar
Knight, F.B. 1960. Measurement of Engelmann spruce beetle populations. Ecology 41: 249252.CrossRefGoogle Scholar
McMullen, L.H., Safranyik, L., and Linton, D.A.. 1985. Suppressions of mountain pine beetle infestations in lodgepole pine. Can. For. Serv. Pac. For. Cent. Inf. Rep. BC-X-276. 20 pp.Google Scholar
Pulley, P.E., Foltz, J.L., Mayyasi, A.M., and Coulson, R.N.. 1976. Topological mapping to estimate numbers of bark inhabiting insects. Environ. Ent. 5: 640643.CrossRefGoogle Scholar
Pulley, P.E., Foltz, J.L., Mayyasi, A.M., Coulson, R.N., and Martin, W.C.. 1977. Sampling procedures for within-tree attacking adult populations of the southern pine beetle, Dendroctonus frontalis (Coleoptera: Scolytidae). Can. Ent. 109: 3948.CrossRefGoogle Scholar
Ralston, M., and Jennrich, R.. 1978. DUD, a derivative-free algorithm for nonlinear least squares. Technometrics 20(1): 714.CrossRefGoogle Scholar
Safranyik, L. 1969. Development of a technique for sampling mountain pine beetle populations in lodgepole pine. Ph.D. dissertation, University of British Columbia, Vancouver, B.C.195 pp.Google Scholar
Safranyik, L., and Linton, D.A.. 1985. The relationship between density of emerged Dendroctonus ponderosae (Coleoptera: Scolytidae) and density of exit poles in lodgepole pine. Can. Ent. 117: 267275.CrossRefGoogle Scholar
Safranyik, L., and Vithayasai, C.. 1971. Some characteristics of the spatial arrangement of attacks by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae), on lodgepole pine. Can. Ent. 103: 16071627.CrossRefGoogle Scholar
Shepherd, R.F. 1965. Distribution of attacks by D. ponderosae Hopk., on Pinus contorta Dougl. var. latifolia Engelm. Can. Ent. 97: 207215.CrossRefGoogle Scholar
Spurr, S.H. 1952. Forest Inventory. Ronald Press, New York. 476 pp.Google Scholar