Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T00:15:48.397Z Has data issue: false hasContentIssue false

Elucidating pheromone and host volatile components attractive to the spruce beetle, Dendroctonus rufipennis (Coleoptera: Curculionidae), in eastern Canada

Published online by Cambridge University Press:  18 June 2013

K.L. Ryall*
Affiliation:
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
P. Silk
Affiliation:
Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, PO Box 4000, Fredericton New Brunswick, Canada E3B 5P7
G.S. Thurston
Affiliation:
Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, PO Box 4000, Fredericton New Brunswick, Canada E3B 5P7
T.A. Scarr
Affiliation:
Ontario Ministry of Natural Resources, 70 Foster Drive, Suite 400, Sault Ste Marie, Ontario, Canada P6A 6V5
P. de Groot
Affiliation:
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
*
1Corresponding author (e-mail: [email protected]). Subject editor: Deepa Pureswaran

Abstract

Frontalin, seudenol, and a spruce terpene blend are key components of a lure for monitoring spruce beetle, Dendroctonus rufipennis (Kirby) (Coleoptera: Curculionidae: Scolytinae) in eastern Canada, catching the highest number of beetles in several field trials. The standard two-component commercial lure for this species, developed from populations in western North America and composed of 95%:5% (±)-α-pinene and frontalin, failed to elicit attraction to traps in Atlantic Canada; thus a series of trapping experiments were conducted to identify an improved combination of pheromone and host volatiles for this region. Analysis of volatiles from D. rufipennis collected from Newfoundland and Nova Scotia, Canada detected seudenol as an additional female-produced component. Laboratory analysis of the eastern host (Picea glauca (Moench) Voss; Pinaceae) detected the presence of 75%:25% (±)-α-pinene; however, a two-component lure comprised of 75%:25% (±)-α-pinene and frontalin caught no more beetles than an unbaited control. Frontalin and seudenol alone or spruce terpene blend and ethanol alone typically had among the lowest trap catches, but when combined they caught the highest numbers of D. rufipennis, supporting the hypothesis that host volatiles synergise attraction to pheromones. Our results highlight the importance of geographic variation in the response to pheromones and kairomones in this bark beetle.

Résumé

La frontaline, le seudénol et un mélange de terpènes d’épinette sont les composantes essentielles d'un appât utilisé pour la surveillance du dendroctone de l’épinette, Dendroctonus rufipennis (Kirby) (Coleoptera: Curculionidae: Scolytinae), dans l'Est du Canada; dans plusieurs essais en nature, cet appât est celui qui a permis la récolte du plus grand nombre de coléoptères. L'appât commercial standard à deux composantes pour cette espèce, mis au point pour des populations de l'Ouest de l'Amérique du Nord et composé de 95%:5% (±)-α-pinène et de frontaline, ne réussit pas à attirer les insectes dans les pièges dans le Canada Atlantique. Nous avons donc entrepris des essais de piégeage afin de découvrir une meilleure combinaison de phéromones et de produits volatils de l'hôte pour cette région. L'analyse des produits volatils émis par des D. rufipennis récoltés à Terre-Neuve et en Nouvelle-Écosse, Canada, révèle la présence de seudénol, une composante additionnelle produite par la femelle. Une analyse en laboratoire d'hôtes de l'Est (Picea glauca (Moench) Voss; Pinaceae) indique la présence de 75%:25% (±)-α-pinène; cependant un appât à deux composantes comprenant de la 75%:25% (±)-α-pinène et de la frontaline ne permet pas la capture de plus de coléoptères qu'un piège témoin sans appât. La frontaline et le seudénol seuls ou le mélange de terpènes d’épinette avec de l’éthanol seul produisent généralement les récoltes les plus faibles dans les pièges; cependant, en combinaison, ils provoquent les plus fortes captures de D. rufipennis, ce qui appuie l'hypothèse selon laquelle les produits volatils de l'hôte ont une action synergique sur l'attraction exercée par la phéromone. Nos résultats soulignent l'importance de la variation géographique sur la réaction aux phéromones et aux kairomones chez ce dendroctone.

Type
Behaviour & Ecology
Copyright
Copyright © Her Majesty the Queen in Right of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased.

References

Allen, J.L., Wesser, S, Markon, C.J., Winterberger, K.C. 2006. Stand and landscape level effects of a major outbreak of spruce beetles on forest vegetation in the Copper River Basin, Alaska. Forest Ecology and Management, 227: 257266.CrossRefGoogle Scholar
Borden, J.H. 1989. Semiochemicals and bark beetle populations: exploitation of natural phenomena by pest management strategists. Holarctic Ecology, 12: 501510.Google Scholar
Borden, J.H., Gries, G., Chong, L.J., Werner, R.A., Holsten, E.H., Wieser, H., et al. 1996. Regionally specific bioactivity of two new pheromones for Dendroctonus rufipennis (Kirby) (Col., Scolytidae). Journal of Applied Entomology, 120: 321326.CrossRefGoogle Scholar
Borden, J.H., Pureswaran, D.S., Lafontaine, J.P. 2008. Synergistic blends of monoterpenes for aggregation pheromones of mountain pine beetle (Coleoptera: Curculionidae). Journal of Economic Entomology, 101: 12661275.CrossRefGoogle ScholarPubMed
Doak, P. 2004. The impact of tree and stand characteristics on spruce beetle (Coleoptera: Scolytidae) induced mortality of white spruce in the Copper River Basin Alaska. Canadian Journal of Forest Research, 34: 810816.CrossRefGoogle Scholar
Dyer, E.D.A. 1973. Spruce beetle aggregated by the synthetic pheromone frontalin. Canadian Journal of Forest Research, 3: 486494.CrossRefGoogle Scholar
Dyer, E.D.A. 1975. Frontalin attractant in stands infested by the spruce beetle, Dendroctonus rufipennis (Coleoptera: Scolytidae). The Canadian Entomologist, 107: 979988.CrossRefGoogle Scholar
Dyer, E.D.A.Chapman, J.A. 1971. Attack by the spruce beetle induced by frontalin or billets with burrowing females. Canadian Forest Service Bimonthly Research Notes, 27: 1011.Google Scholar
Erbilgin, N., Mori, S.R., Sun, J.H., Stein, J.D., Owen, D.R., Merrill, L.D., et al. 2007. Response of host volatiles by native and introduced populations of Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae) in North America and China. Journal of Chemical Ecology, 33: 131146.CrossRefGoogle ScholarPubMed
Erbilgin, N., Powell, J.S., Raffa, K.F. 2003. Effect of varying monoterpene concentrations on the response of Ips pini (Coleoptera: Scolytidae) to its aggregation pheromone: implications for pest management and ecology of bark beetles. Agricultural and Forest Entomology, 5: 269274.CrossRefGoogle Scholar
Erbilgin, N.Raffa, K.F. 2000. Opposing effects of host monoterpenes on responses by two sympatric species of bark beetles to their aggregation pheromones. Journal of Chemical Ecology, 26: 25272548.CrossRefGoogle Scholar
Erbilgin, N., Szele, A., Klepzig, K.D., Raffa, K.F. 2001. Trap type, chirality of α-pinene, and geographic region affect sampling efficiency of root and lower stem insects in pine. Journal of Economic Entomology, 94: 11131121.CrossRefGoogle ScholarPubMed
Furniss, M.M., Baker, B.H., Holstetler, B.B. 1976. Aggregation of spruce beetles (Coleoptera) to seudenol and repression of attraction by methylcyclohexenone in Alaska. The Canadian Entomologist, 108: 12971302.CrossRefGoogle Scholar
Gries, G., Borden, J.H., Gries, R., Lafontaine, J.P., Dixon, E.A., Wieser, H, Whitehead, A.T 1992. 4-Methylen-6, 6-dimethylbicyclo[3.1.1]hept-2-ene (verbenene): new aggregation pheromone of the scolytid beetle Dendroctonus rufipennis. Naturwissenschaften, 79: 367368.CrossRefGoogle Scholar
Gries, G., Pierce, H.D., Lindgren, B.S., Borden, J.H. 1988. New techniques for capturing and analyzing semiochemicals for scolytid beetles (Coleoptera: Scolytidae). Journal of Economic Entomology, 81: 17151720.CrossRefGoogle Scholar
Grosman, D.M., Salom, S.M., Ravlin, F.W., Young, R.W. 1997. Geographic and gender differences in semiochemicals in emerging adult southern pine beetle (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 90: 438446.CrossRefGoogle Scholar
Haberkern, K.E.Raffa, K.F. 2003. Phloeophagous and predaceous insects responding to synthetic pheromones of bark beetles inhabiting white spruce stands in the Great Lakes region. Journal of Chemical Ecology, 29: 16511663.CrossRefGoogle ScholarPubMed
Hansen, E.M., Vandygriff, J.C., Cain, R.J., Wakarchuk, D. 2006. Comparison of naturally and synthetically baited spruce beetle trapping systems in the Central Rocky Mountains. Journal of Economic Entomology, 99: 373382.CrossRefGoogle ScholarPubMed
Holsten, E.H., Shea, P.J., Borys, R.R. 2003. MCH released in a novel pheromone dispenser prevents spruce beetle, Dendroctonus rufipennis (Coleoptera: Scolytidae), attacks in south-central Alaska. Journal of Economic Entomology, 96: 3134.CrossRefGoogle Scholar
Kline, L.N., Schmitz, R.F., Rudinsky, J.A., Furniss, M.M. 1974. Repression of spruce beetle (Coleoptera) attraction by methylcyclohexanone in Idaho. The Canadian Entomologist, 106: 485491.CrossRefGoogle Scholar
Lanier, G.N., Birch, M.C., Schmitz, R.F., Furniss, M.M. 1972. Pheromones of Ips pini (Coleoptera: Scolytidae): variation in response among three populations. The Canadian Entomologist, 104: 485491.CrossRefGoogle Scholar
Lanier, G.N., Claesson, A., Stewart, T., Piston, J., Silverstein, R.M. 1980. Ips pini: the basis for interpopulational differences in pheromone biology. Journal of Chemical Ecology, 6: 677687.CrossRefGoogle Scholar
Lemay, M.A., Silk, P.J., Sweeney, J. 2010. Calling behavior of Tetropium fuscum (Coleoptera: Cerambycidae: spondylidinae). The Canadian Entomologist, 142: 256260.CrossRefGoogle Scholar
Maroja, L.S., Bogdanowicz, S.M., Wallin, K.F., Raffa, K.F., Harrison, R.G. 2007. Phylogeography of spruce beetles (Dendroctonus rufipennis Kirby) (Curculionidae: Scolytinae) in North America. Molecular Ecology, 16: 25602573.CrossRefGoogle Scholar
Miller, D.R.Borden, J.H. 2000. Dose-dependent and species-specific responses of pine bark beetles (Coleoptera: Scolytidae) to monoterpenes in association with pheromones. The Canadian Entomologist, 132: 183195.CrossRefGoogle Scholar
Miller, D.R., Gibson, K.E., Raffa, K.F., Seybold, S.J., Teale, S.A., Wood, D.L. 1997. Geographic variation in response of pine engraver, Ips pini, and associated species to pheromone, lanierone. Journal of Chemical Ecology, 23: 20132031.CrossRefGoogle Scholar
Miller, D.R., Raffa, K.F., Dalusky, M.J., Berisford, C.W. 2003. North-south variation in the response of the pine engraver (Coleoptera: Scolytidae) to lanierone and ipsdienol in eastern North America. Journal of Entomological Science, 38: 468476.CrossRefGoogle Scholar
Moeck, H.A. 1981. Ethanol induces attack on trees by spruce beetles, Dendroctonus rufipennis, Coleoptera: Scolytidae. The Canadian Entomologist, 113: 939942.CrossRefGoogle Scholar
Moreno, B., Macias, J., Sullivan, B.T., Clarke, S.R. 2008. Field response of Dendroctonus frontalis (Coleoptera: Scolytinae) to synthetic semiochemicals in Chiapas, Mexico. Journal of Economic Entomology, 101: 18211825.CrossRefGoogle ScholarPubMed
Poland, T.M.Borden, J.H. 1998. Disruption of secondary attraction of the spruce beetle, Dendroctonus rufipennis, by pheromones of two sympatric species. Journal of Chemical Ecology, 24: 151166.CrossRefGoogle Scholar
Pureswaran, D.S.Borden, J.H. 2005. Primary attraction and kairomonal host discrimination in three species of Dendroctonus (Coleoptera: Scolytidae). Agricultural and Forest Entomology, 7: 219230.CrossRefGoogle Scholar
Pureswaran, D.S., Gries, R., Borden, J.H. 2004. Antennal responses of four species of tree-killing bark beetles (Coleoptera: Scolytidae) to volatiles collected from beetles, and their host and nonhost conifers. Chemoecology, 14: 5966.CrossRefGoogle Scholar
Ross, D.W.Daterman, G.E. 1995. Response of Dendroctonus pseudotsugae (Coleoptera: Scolytidae) and Thanasimus undulates (Coleoptera: Cleridae) to traps with different semiochemicals. Journal of Economic Entomology, 88: 106111.CrossRefGoogle Scholar
Ross, D.W., Daterman, G.E., Munson, S.A. 2005. Spruce beetle (Coleoptera: Scolytidae) response to traps baited with selected semiochemicals in Utah. Western North American Naturalist, 65: 123126.Google Scholar
Setter, R.R.Borden, J.H. 1999. Bioactivity and efficacy of MCOL and seudenol as potential bait components for Dendroctonus rufipennis (Coleoptera: Scolytidae). The Canadian Entomologist, 131: 251257.CrossRefGoogle Scholar
Seybold, S.J., Ohtsuka, T., Wood, D. 1995. Enantiomeric composition of ipsdienol: a chemotaxonomic character of North American population of Ips spp in the pini subgeneric group (Coleoptera: Scolytidae). Journal of Chemical Ecology, 21: 9951016.CrossRefGoogle Scholar
Silk, P.J., Ryall, K., Mayo, P., Lemay, M., Grant, G., Crook, D., et al. 2011. Evidence for a volatile pheromone in Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) that increases attraction to a host foliar volatile. Environmental Entomology, 40: 904916.CrossRefGoogle ScholarPubMed
Silk, P.J., Sweeney, J.D., Wu, J., Price, J., Gutowski, J., Kettela, E.G. 2007. Evidence for a male-produced pheromone in Tetropiun fuscum (F) and Tetropium cinnamopterum (Kirby) (Coleoptera: Cerambycidae). Naturwissenschaften,, 94: 697701.CrossRefGoogle ScholarPubMed
Sweeney, J., De Groot, P., Macdonald, L., Smith, S., Cocquempot, C., Kenis, M., et al. 2004. Host volatile attractants and traps for detection of Tetropium fuscum (F), Tetropium castaneum L., and other longhorned beetles (Coleoptera: Cerambycidae). Journal of Chemical Ecology, 33: 844854.Google Scholar
Sweeney, J., Gutowski, J.M., Price, J., de Groot, P. 2006. Effect of semiochemicals release rate, killing agent, and trap design on detection of Tetropium fuscum (F.) and other longhorn beetles (Coleoptera: Cerambycidae). Environmental Entomology, 35: 645654.CrossRefGoogle Scholar
Veblen, T.T., Hadley, K.S., Reid, M.S., Rebertus, A.J. 1991. The response of subalpine forests to spruce beetle outbreak in Colorado. Ecology, 72: 213231.CrossRefGoogle Scholar
Vité, J.P., Islas, S.F., Renwick, J.A.A., Hughes, P.R., Kliefoth, R.A. 1974. Biochemical and biological variation of southern pine beetle populations in North and Central America. Zeitschrift für Angewandte Entomologie, 75: 422435.CrossRefGoogle Scholar
Vité, J.P., Pitman, G.B., Fentiman, A.F., Kinze, G.W. 1972. 3-Methyl-2-cyclohexen-1-ol isolated from Dendroctonus. Naturwissenschaften, 72: 99100.CrossRefGoogle Scholar
Werner, R.A., Holsten, E.H., Matsuoka, S.M., Burnside, R.E. 2006. Spruce beetles and forest ecosystems in south-central Alaska: a review of 30 years of research. Forest Ecology and Management, 227: 195206.CrossRefGoogle Scholar
Wood, S.L. 1982a. The bark and ambrosia beetles (Coleoptera: Scolytidae) of North and Central America, a taxonomic monograph. Great Basin Naturalist Memoirs, 6: 11359.Google Scholar
Wood, S.L. 1982b. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annual Review of Entomology, 27: 411446.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical analysis, 2nd edition. Prentice-Hall, Engelwood Cliffs, New Jersey, United States of America.Google Scholar