Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T07:31:00.745Z Has data issue: false hasContentIssue false

EFFICACY OF MIXTURES OF MICROBIAL INSECTICIDES AND PERMETHRIN AGAINST THE CABBAGE LOOPER (LEPIDOPTERA: NOCTUIDAE) AND THE IMPORTED CABBAGEWORM (LEPIDOPTERA: PIERIDAE)

Published online by Cambridge University Press:  31 May 2012

Robert P. Jaques
Affiliation:
Agriculture Canada Research Station, Harrow, Ontario, Canada N0R 1G0
Daniel R. Laing
Affiliation:
Agriculture Canada Research Station, Harrow, Ontario, Canada N0R 1G0
H. Eric L. Maw
Affiliation:
Agriculture Canada Research Station, Harrow, Ontario, Canada N0R 1G0

Abstract

The joint action of permethrin and Bacillus thuringiensis var. kurstaki Berliner (B.t.), Autographa californica (Speyer) nuclear polyhedrosis virus (ACNPV), or Artogeia (= Pieris) rapae (L.) granulosis virus (ARGV) fed as mixtures to larvae of Trichoplusia ni (Hübner) or A. rapae in laboratory bioassys differed with the host insect, the components, and the concentrations of the components. Permethrin interfered with the activity of ACNPV and ARGV in most of the mixtures, particularly at low concentrations of the latter virus but mortality by mixtures of mid-range (approximately LC50 if fed alone) concentrations of permethrin and of ACNPV exceeded the mortality expected by the components acting independently. Concentrations of permethrin in the middle of the dosage range enhanced the effect of B.t. against T. ni resulting in mortality that exceeded the expected mortality but mortality of A. rapae larvae fed most permethrin–B.t. mixtures was less than expected.

Résumé

L’action conjointe de la perméthrine mélangée avec Bacillus thuringiensis var. kurstaki Berliner (B.t.), le virus de la polyhédrose nucléaire d’Autographa californica (Speyer) (ACNPV), ou le virus de la granulosis d’Artogeia (=Pieris) rapae (L.) (ARGV), et utilisée pour nourrir les larves de Trichoplusia ni (Hübner) ou A. rapae au cours d’essais biologiques en laboratoire a varié selon l’insecte hôte, les composantes du mélange et la concentration de ces composantes. La perméthrine a interféré avec l’activité du ACVPN et du ARVG dans la plupart des mélanges, particulièrement dans les mélanges à faible teneur en ARVG. Cependant, les taux de mortalité obtenu avec les mélanges ayant des teneurs intermédiaires (environ CL50 pris seul) en perméthrine et en ACVPN ont dépassé les résultats escomptés pour les composantes prises individuellement. Les teneurs intermédiaires en perméthrine ont accentué l’effet de B.t. contre T. ni, ce qui a donné des taux de mortalité supérieurs aux taux prévus. Par ailleurs, les mélanges de perméthrine et de B.t. qui ont servi à mourrir les larves de A. rapae en ont tué un moins grand nombre que prévu.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 1988. Vegetable Production Recommendations. Publication 363. Ontario Ministry of Agriculture and Food, Toronto, Ontario, Canada. 81 pp.Google Scholar
Bliss, C.I. 1939. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26: 585615.CrossRefGoogle Scholar
Jaques, R.P. 1967. The persistence of a nuclear polybedrosis virus in the habitat of the host insect, Trichoplusia ni. 1. Polyhedra deposited on foliage. Can. Ent. 99: 785794.CrossRefGoogle Scholar
Jaques, R.P. 1972. Control of the cabbage looper and the imported cabbageworm by viruses and bacteria. J. econ. Ent. 65: 757760.CrossRefGoogle Scholar
Jaques, R.P. 1977. Field efficacy of viruses infectious to the cabbage looper and imported cabbageworm on late cabbage. J. econ. Ent. 70: 111118.CrossRefGoogle Scholar
Jaques, R.P. 1988. Field tests on control of the imported cabbageworm (Lepidoptera: Pieridae) and the cabbage looper (Lepidoptera: Noctuidae) by mixtures of microbial and chemical insecticides. Can. Ent. 120: 575580.CrossRefGoogle Scholar
Jaques, R.P., and Laing, D.R.. 1978. Efficacy of mixtures of Bacillus thuringiensis, viruses, and chlordimeform against insects on cabbage. Can. Ent. 110: 443448.Google Scholar
Lublinkhof, J., Lewis, L.C., and Berry, E.C.. 1979. Effectiveness of integrating insecticides with Nosema pyrausta for suppressing populations of the European corn borer. J. econ. Ent. 72: 880883.Google Scholar
Krieg, A., and Langenbruch, G.A.. 1981. Susceptibility of arthropod species to Bacillus thuringiensis. pp. 837–896 in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases 1970–1980. Academic Press, London. 949 pp.Google Scholar
McEwen, F.L., and Hervey, G.E.R.. 1959. Microbial control of two cabbage insects. J. Insect Pathol. 1: 8694.Google Scholar
Mohamed, A.I., Young, S.Y., and Yearian, W.C.. 1983. Susceptibility of Heliothis virescens (F.) (Lepidoptera: Noctuidae) larvae to microbial agent – chemical pesticide mixtures on cotton foliage. Environ. Ent. 12: 14031405.CrossRefGoogle Scholar
Morris, O.N. 1977. Long term study of the effectiveness of aerial application of Bacillus thuringiensis – acephate combinations against the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 109: 12391248.CrossRefGoogle Scholar
Robertson, J.L., and Smith, K.C.. 1984. Joint action of pyrethroids with organophosphorous and carbarnate insecticides applied to western spruce budworm (Lepidoptera: Tortricidae). J. econ. Ent. 77: 1622.Google Scholar
Rud, E.R., and Belloncik, S.. 1984. Efficacy of combinations of polyhedrosis viruses and permethrin against the white cutworm, Euxoa scandens (Riley) (Lepidoptera: Noctuidae). J. econ. Ent. 77: 989994.Google Scholar