Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T05:22:31.820Z Has data issue: false hasContentIssue false

Effects of trap height on captures of arboreal insects in pine stands of northeastern United States of America

Published online by Cambridge University Press:  17 October 2013

Kevin J. Dodds*
Affiliation:
United States Department of Agriculture Forest Service, Forest Health Protection, 271 Mast Road, Durham, New Hampshire 03824, United States of America
*
1 Corresponding author (e-mail: [email protected]).

Abstract

Knowledge of the effects of variables that can influence trapping results should help to optimise efforts in exotic species detection and other surveys. Two vertical trap placements (understorey, canopy) were tested to determine influence of these two heights on captures of Scolytinae (Coleoptera: Curculionidae), Cerambycidae (Coleoptera), and Siricidae (Hymenoptera) using semiochemical-baited multiple-funnel traps. Traps were baited with α-pinene, ethanol, ipsdienol, and ipsenol. A total of 8463 insects from 65 species and one genus were captured during the study. Average species richness, species diversity, abundance, number of unique species, and expected diversity were higher in understorey compared with canopy traps. Jaccard (0.94 ± 0.05) and Sørensen abundance (0.97 ± 0.03) similarity indices suggested highly similar communities sampled at the two trap heights. Dendroctonus valens LeConte, Dryocoetes autographus Ratzeburg, Hylastes opacus Erichson, Orthotomicus caelatus (Eichhoff), Gnathotrichus materiarius (Fitch), Asemum striatum (Linnaeus), Monochamus scutellatus scutellatus (Say), Rhagium inquisitor (Linnaeus), and Xylotrechus sagitattus sagitattus (Germar) were more abundant in understorey traps. In contrast, Ips pini (Say), Pityogenes hopkinsi Swaine, Monochamus carolinensis (Olivier), Acmaeops proteus (Kirby), and Astylopsis sexgutatta (Say) were more abundant in canopy traps. The common practice of trapping in the understorey may be optimal for sampling arboreal insects as part of survey efforts. However, additional species may be found by trapping at other vertical placements.

Résumé

Une connaissance des effets des variables qui peuvent influencer les résultats de piégeage devrait permettre d'optimiser les efforts de détection des espèces exotiques et d'inventaires divers. Nous avons évalué l'influence de deux positions verticales (sous-bois et canopée) de pièges à entonnoirs multiples munis d'appâts sémiochimiques sur les captures de Scolytinae (Coleoptera: Curculionidae), de Cerambycidae (Coleoptera) et de Siricidae (Hymenoptera). Les pièges ont été munis d’α-pinène, d’éthanol, d'ipsidiénol et d'ipsénol. En tout, 8463 insectes représentant 65 espèces et un genre ont été récoltés durant l’étude. La richesse spécifique moyenne, la diversité spécifique, l'abondance, le nombre d'espèces uniques et la diversité attendue sont plus élevés dans les pièges du sous-bois que dans ceux de la canopée. Les indices de similarité de Jaccard (0,94 ± 0,05) et de Sørensen (0,97 ± 0,003) laissent croire que des communautés très semblables ont été échantillonnées aux deux niveaux de pièges. Dendroctonus valens LeConte, Dryocoetes autographus Ratzeburg, Hylastes opacus Erichson, Orthotomicus caelatus (Eichhoff), Gnathotrichus materiarius (Fitch), Asemum striatum (Linnaeus), Monochamus scutellatus scutellatus (Say), Rhagium inquisitor (Linnaeus) et Xylotrechus sagitattus sagitattus (Germar) étaient plus abondants dans les pièges dans le sous-bois. En revanche, Ips pini (Say), Pityogenes hopkinsi Swaine, Monochamus carolinensis (Olivier), Acmaeops proteus (Kirby) et Astylopsis sexgutatta (Say) étaient plus abondants dans les pièges de la canopée. La pratique courante de placer les pièges dans le sous-bois peut être optimale pour l’échantillonnage des insectes arboricoles lors de travaux d'inventaire. Cependant, on peut obtenir des espèces additionnelles en fixant les pièges à d'autres hauteurs.

Type
Techniques
Copyright
Copyright © Entomological Society of Canada 2013. This is a work of the U.S. Government and is not subject to copyright protection in the United States 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Staffan Lindgren

References

Allison, J.D., Johnson, C.W., Meeker, J.R., Strom, B.L., Butler, S.M. 2011. Effect of aerosol surface lubricants on the abundance and richness of selected forest insects captured in multiple-funnel and panel traps. Journal of Economic Entomology, 104: 12581264. doi:10.1603/ec11044.Google Scholar
Ayres, B.D., Ayres, M.P., Abrahamson, M.D., Teale, S.A. 2001. Resource partitioning and overlap in three sympatric species of Ips bark beetles (Coleoptera: Scolytidae). Oecologia, 128: 443453.Google Scholar
Baker, W.L. 1972. Eastern forest insects. United States Department of Agriculture, Forest Service, Washington, District of Columbia, United States of America.Google Scholar
Bouget, C., Brustel, H., Brin, A., Noblecourt, T. 2008. Sampling saproxylic beetles with window flight traps: methodological insights. Revue d'Ecologie (Terre Vie), 63: 1324.Google Scholar
Brockerhoff, E.G., Jones, D.C., Kimberley, M.O., Suckling, D.M., Donaldson, T. 2006. Nationwide survey for invasive wood-boring and bark beetles (Coleoptera) using traps baited with pheromones and kairomones. Forest Ecology and Management, 228: 234240.Google Scholar
Chao, A., Chazdon, R.L., Colwell, R.K., Shen, T.J. 2006. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics, 62: 361371. doi: 10.1111/j.1541-0420.2005.00489.x.Google Scholar
Chao, A. Shen, T.J. 2010. Program SPADE (species prediction and diversity estimation). Program and user's guide [online]. Available from http://chao.stat.nthu.edu.tw/blog/software-download/spade [accessed 24 July 2013].Google Scholar
Ciesla, W.M. 2003. European woodwasp – a potential threat to North America's conifer forests. Journal of Forestry, 101: 1823.Google Scholar
de Groot, P. Nott, R. 2001. Evaluation of traps of six different designs to capture pine sawyer beetles (Coleoptera: Scolytidae). Agricultural and Forest Entomology, 3: 107111.CrossRefGoogle Scholar
Dodds, K.J. 2011. Effects of habitat type and trap placement on captures of bark (Coleoptera: Scolytidae) and longhorned (Coleoptera: Cerambycidae) beetles in semiochemical-baited traps. Journal of Economic Entomology, 104: 879888.CrossRefGoogle ScholarPubMed
Dodds, K.J., Dubois, G.D., Hoebeke, E.R. 2010. Trap type, lure placement, and habitat effects on Cerambycidae and Scolytinae (Coleoptera) catches in the northeastern United States. Journal of Economic Entomology, 103: 698707.Google Scholar
Dodds, K.J., Zylstra, K.E., Dubois, G.D., Hoebeke, E.R. 2012. Arboreal insects associated with herbicide-stressed Pinus resinosa and Pinus sylvestris used as Sirex noctilio trap trees in New York. Environmental Entomology, 41: 13501363.Google Scholar
Flechtmann, C.A.H., Ottati, A.L.T., Berisford, C.W. 2000. Comparison of four trap types for ambrosia beetles (Coleoptera, Scolytidae) in Brazilian eucalyptus stands. Journal of Economic Entomology, 93: 17011707.CrossRefGoogle ScholarPubMed
Graham, E.E., Mitchell, R.F., Reagel, P.F., Barbour, J.D., Millar, J.G., Hanks, L.M. 2010. Treating panel traps with a fluoropolymer enhances their efficiency in capturing cerambycid beetles. Journal of Economic Entomology, 103: 641647. doi:10.1603/ec10013.Google Scholar
Graham, E.E., Poland, T.M., McCullough, D.G., Millar, J.G. 2012. A comparison of trap type and height for capturing cerambycid beetles (Coleoptera). Journal of Economic Entomology, 105: 837846. doi: 10.1603/Ec12053.Google Scholar
Haack, R.A., Hérard, F., Sun, J., Turgeon, J.J. 2010. Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective. Annual Review of Entomology, 55: 521546.Google Scholar
Hammer, Ø., Harper, D.A.T., Ryan, P.D. 2001. PAST: paleontological statistics software package for eduation and data analysis. Palaeontologia Electronica, 4: 9 pp.Google Scholar
Hoebeke, E.R. 1994. New records of immigrant bark beetles (Coleoptera: Scolytidae) in New York: attraction of conifer-feeding species to ethanol-baited trap logs. Entomological News, 105: 267276.Google Scholar
Hughes, A. Hughes, M. 1982. Male size, mating success, and breeding habitat partitioning in the whitespotted sawyer Monochamus scutellatus (Say) (Coleoptera: Cerambycidae). Oecologia, 55: 258263. doi:10.1007/bf00384497.CrossRefGoogle ScholarPubMed
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). The Canadian Entomologist, 115: 299302.Google Scholar
Mayfield, A.E. III. 2007. Laurel wilt: a serious threat to redbay and other related native plants. The Palmetto (Quarterly Journal of the Florida Native Plant Society), 24: 811.Google Scholar
Miller, D.R. Duerr, D.A. 2008. Comparison of arboreal beetle catches in wet and dry collection cups with Lindgren multiple funnel traps. Journal of Economic Entomology, 101: 107113.Google Scholar
Miller, D.R. Rabaglia, R.J. 2009. Ethanol and (-)-alpha-pinene: attractant kairomones for bark and ambrosia beetles in the southeastern US. Journal of Chemical Ecology, 35: 435448.Google Scholar
Morewood, W.D., Hein, K.E., Katinic, P.J., Borden, J.H. 2002. An improved trap for large wood-boring insects, with special reference to Monochamus scutellatus (Coleoptera: Cerambycidae). Canadian Journal of Forest Research, 32: 519525.Google Scholar
Nord, J.C. Knight, F.B. 1972. The distribution of Saperda inornata and Oberea schaumii (Coleoptera: Cerambycidae) within the crowns of large trembling aspen, Populus tremuloides . The Great Lakes Entomologist, 5: 2832.Google Scholar
Owen, D.R., Smith, S.L., Seybold, S.J. 2010. Red turpentine beetle. United States Department of Agriculture Forest Service, Pacific Northwest Region, Portland, Oregon, United States of America.Google Scholar
Paine, T.D., Birch, M.C., Švihra, P. 1981. Niche breadth and resource partitioning by four sympatric species of bark beetles (Coleoptera: Scolytidae). Oecologia, 48: 16.Google Scholar
Rabaglia, R., Duerr, D., Acciavatti, R.E., Ragenovich, I. 2008. Early detection and rapid response for non-native bark and ambrosia beetles. United States Department of Agriculture Forest Service, Forest Health Protection, Washington, District of Columbia, United States of America.Google Scholar
Raffa, K.F. 1991. Temporal and spatial disparities among bark beetles, predators, and associates responding to synthetic bark beetle pheromones – Ips pini (Coleoptera, Scolytidae) in Wisconsin. Environmental Entomology, 20: 16651679.Google Scholar
Reagel, P.F., Smith, M.T., Hanks, L.M. 2012. Effects of larval host diameter on body size, adult density, and parasitism of cerambycid beetles. The Canadian Entomologist, 144: 435438. doi:10.4039/Tce.2012.39.Google Scholar
Ryan, K., de Groot, P., Smith, S.M. 2011. Evidence of interaction between Sirex noctilio and other species inhabiting the bole of Pinus . Agricultural and Forest Entomology, 14: 187195. doi:10.1111/j.1461-9563.2011.00558.x.Google Scholar
Strom, B.L. Goyer, R.A. 2001. Effect of silhouette color on trap catches of Dendroctonus frontalis (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 94: 948953.Google Scholar
Su, J.C. Woods, S.A. 2001. Importance of sampling along a vertical gradient to compare the insect fauna in managed forests. Environmental Entomology, 30: 400408.Google Scholar
Ulyshen, M.D. Hanula, J.L. 2007. A comparison of the beetle (Coleoptera) fauna captured at two heights above the ground in a North American temperate deciduous forest. American Midland Naturalist, 158: 260278.CrossRefGoogle Scholar
Vance, C.C., Kirby, K.R., Malcolm, J.R., Smith, S.M. 2003. Community composition of longhorned beetles (Coleoptera: Cerambycidae) in the canopy and understorey of sugar maple and white pine stands in south-central Ontario. Environmental Entomology, 32: 10661074.Google Scholar
Wermelinger, B., Fluckiger, P.F., Obrist, M.K., Duelli, P. 2007. Horizontal and vertical distribution of saproxylic beetles (Col., Buprestidae, Cerambycidae, Scolytinae) across sections of forest edges. Journal of Applied Entomology, 131: 104114. doi:10.1111/j.1439-0418.2006.01128.x.Google Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs, 6: 11359.Google Scholar