Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T05:13:19.342Z Has data issue: false hasContentIssue false

EFFECTS OF STARVATION IN THE FIRST INSTAR LARVA ON GROWTH, DEVELOPMENT AND SURVIVAL IN THE RED TURNIP BEETLE, ENTOMOSCELIS AMERICANA (COLEOPTERA: CHRYSOMELIDAE)1

Published online by Cambridge University Press:  31 May 2012

G. H. Gerber
Affiliation:
Agriculture Canada, Research Station, Winnipeg, Manitoba R3T 2M9

Abstract

Eggs of the red turnip beetle, Entomoscelis americana Brown, and seeds of Candle cultivar of Brassica campestris L. and Regent cultivar of B. napus L. (Cruciferae) were exposed to seven constant temperatures (10°–25 °C). At each temperature, egg hatching occurred about 1.0–1.5 days sooner than germination in B. campestris and 1.5–2.25 days sooner than germination in B. napus. Also, germination took place about ½ day sooner in B. campestris than in B. napus. These data indicated that the eggs of E. americana and the seeds of B. campestris and B. napus respond similarly to changes in temperature. Newly-hatched larvae of E. americana were starved for 0–8 days at 15°, 20°, and 25 °C. Starvation-related mortality was not high until they had been starved for more than 2–4 days at 15 °C and 1–2 days at 20° and 25 °C, indicating that the first instar larva has a relatively-limited capability to withstand starvation. Among the survivors, the developmental times for most of the starved larvae were significantly longer than those for the unstarved larvae, but the weights of the adults from starved and unstarved larvae were similar, suggesting that starvation delayed growth and development, but had no apparent adverse or lasting effects on these processes. An evaluation of the egg hatching, germination, and starvation data and of the atmospheric air temperature and soil surface temperature data for the areas where B. campestris and B. napus are grown in Canada suggested that the first instar larva of E. americana normally should not suffer high mortality due to starvation in growers' fields where volunteer seedlings of these two species are the major larval food.

Résumé

On a exposé des oeufs de la chrysomèle du navet (Entomoscelis americana Brown) et des graines du cultivar Candie de Brassica campestris L. ainsi que du cultivar Regent de B. napus L. (crucifères) à 7 températures constantes (10–25 °C). A chaque température, les oeufs de la chrysomèle éclosent 1.0 à 1.5 jour avant la germination des graines de B. campestris et 1.5 à 2.25 jours avant celle des semences de B. napus. En outre, les graines de B. campestris germent environ une demi-journée avant celles de B. napus. Ces données indiquent que les oeufs de E. americana et les semences de B. campestris et de B. napus réagissent de la même façon aux changements de température. Les jeunes larves de chrysomèle, gardées à une température de 15, 20 ou 25 °C, n'ont pas été nourries pendant une période allant de 0 à 8 jours. Le taux de mortalité lié à la privation d'aliments n'est pas très élevé avant que l'on atteigne 2 à 4 jours à une température de 15 °C ou 1 à 2 jours à une température de 20 ou 25 °C, signe que le premier instar larvaire a une résistance relativement faible à l'absence de nourriture. Le développement des larves survivantes a pris sensiblement plus de temps que celui des larves non affamées, mais le poids de l'insecte adulte était le même dans les deux cas, ce qui indique que si la famine retarde et prolonge la croissance, elle n'a aucun effet néfaste ni durable sur ce processus. L'analyse des données sur l'éclosion des oeufs, la germination des graines et la privation d'aliments ainsi que sur la température de l'air et du sol de surface dans les régions où l'on cultive B. campestris et B. napus montrent que le premier instar larvaire de la chrysomèle du navet ne devrait pas connaître un taux de mortalité élevé à la suite du manque d'aliments dans les champs où les larves se nourrissent surtout des pousses spontanées des deux espèces précitées.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphe, D. 1979. Canola: Canada's rapeseed crop. Rapeseed Ass. Can. Publ. 56.Google Scholar
Boughner, C. C. and Thomas, M. K.. 1962. The climate of Canada. Meteorological Brch., Air Serv., Dep. Transp., Toronto. 74 pp.Google Scholar
Brown, W. J. 1942. The American species of Entomoscelis and Hippuriphila (Coleoptera: Chrysomelidae). Can. Ent. 74: 172176.CrossRefGoogle Scholar
Gerber, G. H. 1981. Cold-hardiness in the eggs of the red turnip beetle, Entomoscelis americana (Coleoptera: Chrysomelidae). Can. Ent. 113: 795800.CrossRefGoogle Scholar
Gerber, G. H. 1982. A pest management system for the red turnip beetle on rapeseed and canola. Canada Agric. 27(3): 811.Google Scholar
Gerber, G. H. and Lamb, R. J.. 1982. Phenology of egg hatching for the red turnip beetle, Entomoscelis americana (Coleoptera: Chrysomelidae). Environ. Ent. 11: 12581263.CrossRefGoogle Scholar
Gerber, G. H. and Obadofin, A. A.. 1981 a. Growth, development, and survival of the larvae of the red turnip beetle, Entomoscelis americana (Coleoptera: Chrysomelidae), on Brassica campestris and B. napus (Cruciferae). Can. Ent. 113: 395406.CrossRefGoogle Scholar
Gerber, G. H. and Obadofin, A. A.. 1981 b. The suitability of nine species of Cruciferae as hosts for the larvae of the red turnip beetle, Entomoscelis americana (Coleoptera: Chrysomelidae). Can. Ent. 113: 407413.CrossRefGoogle Scholar
Hare, F. K. and Thomas, M. K.. 1979. Climate Canada. Wiley, Toronto.Google Scholar
Harper, F. R. and Berkenkamp, B.. 1975. Revised growth-stage key for Brassica campestris and B. napus. Can. J. Pl. Sci. 55: 657658.CrossRefGoogle Scholar
Kendrew, W. G. and Currie, B. W.. 1955. The Climate of Central Canada. Queen's Printer, Ottawa, 194 pp.Google Scholar
Price, P. W. 1975. Insect Ecology. Wiley, Toronto.Google Scholar
Willmer, P. G. 1982. Microclimate and the environmental physiology of insects. pp. 157in Berridge, M. J., Treherne, J. E., and Wigglesworth, V. B. (Eds.), Advances in Insect Physiology. Academic Press, Toronto.Google Scholar