Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T05:03:11.816Z Has data issue: false hasContentIssue false

Effects of an azinphos-methyl runoff event on macroinvertebrates in the Wilmot River, Prince Edward Island, Canada

Published online by Cambridge University Press:  02 April 2012

Lisa A. Purcell*
Affiliation:
Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
Donna J. Giberson
Affiliation:
Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
*
1 Corresponding author (e-mail: [email protected]).

Abstract

High levels of azinphos-methyl (0.4–0.8 µg/L) were detected in the Wilmot River, Prince Edward Island, Canada, following runoff from an agricultural field after a heavy rainfall on 19 July 2002. Benthic macroinvertebrate abundance and diversity were sharply lower in samples collected 1 d after the event compared with samples collected in the same manner in July or October 2001. The greatest effects were noticed on the aquatic insects, whose abundance declined from >10 000 individuals per 3-min kick sample in July 2001 to <900 individuals per 3-min kick sample in July 2002. One family of Diptera, one family of Plecoptera, and three families of Trichoptera disappeared entirely from the study reach after the runoff event, and several other families were severely depleted in number. This led to low taxonomic similarity values between the communities before and after the runoff event and a change relative to reference streams on PEI. Examination of biological metrics (including indices such as % EPT (Ephemeroptera, Plecoptera, or Trichoptera), % chironomids, % burrowers, etc.) confirmed that aquatic insects were more heavily targeted by the insecticide than non-insect invertebrates. This resulted in a shift in the community towards non-insect taxa that were better able to avoid or tolerate this type of pollution.

Résumé

De fortes teneurs d'azinphos-méthyle (0,4–0,8 µg/L) ont été détectées dans la Wilmot, Île-du-Prince-Édouard, Canada, résultant du ruissellement d'un champ agricole après une forte pluie le 19 juillet 2002. L'abondance et la diversité des macroinvertébrés benthiques ont fortement diminué dans les échantillons récoltés 1 j après l'événement, par rapport à des échantillons recueillis de la même manière en juillet et en octobre 2001. Les effets les plus prononcés se sont produits chez les insectes aquatiques dont l'abondance a décliné de >10 000 individus par échantillonnage de 3 min au filet troubleau par coups de pied (« kick sample ») en juillet 2001 à <900 individus par échantillon de 3 min au filet troubleau en juillet 2002. Une famille de diptères, une de plécoptères et trois de trichoptères ont entièrement disparu de la zone d'étude après l'événement et les densités de plusieurs autres ont été considérablement réduites. Cela a eu comme conséquence de diminuer les valeurs de similarité taxonomique entre les communautés avant et après l'événement et de produire un changement de communauté par rapport aux cours d'eau témoins à l'IPE. L'analyse des métriques biologiques (en particulier des indices tels que le % d'EPT (éphéméroptères–plécoptères–trichoptères), le % de chironomidés, % de fouisseurs, etc.) confirme que les insectes aquatiques ont été plus fortement ciblés par l'insecticide que les autres invertébrés non insectes. Il en est résulté un glissement de la composition de la communauté en faveur des taxons autres que les insectes qui ont mieux réussi à éviter et à tolérer ce type de pollution.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Giberson, D.J., and Cobb, D.G. 1995. Do floods always disturb mayfly communities? In Current directions in research on Ephemeroptera. Edited by Corkum, L.D. and Ciborowski, J.J.H.. Canadian Scholar's Press, Toronto. pp. 237252.Google Scholar
Gormley, K.L., Teather, K.L., and Guignion, D.L. 2005. Changes in salmonid communities associated with pesticide runoff events. Ecotoxicology, 14: 671678.CrossRefGoogle ScholarPubMed
Heckman, C.W. 1981. Long-term effects of intensive pesticide applications on the aquatic community in orchard drainage ditches near Hamburg, Germany. Archives of Environmental Contamination and Toxicology, 10: 393426.CrossRefGoogle ScholarPubMed
Kidd, H., and James, D.R. (Editors). 1991. The agrochemical handbook. 3rd ed. Royal Society of Chemistry Information Services, Cambridge, United Kingdom.Google Scholar
Lancaster, J., and Hildrew, A.G. 1993. Characterizing in-stream flow refugia. Canadian Journal of Fisheries and Aquatic Sciences, 50: 16631675.CrossRefGoogle Scholar
Merritt, R.W., and Cummins, K.W. (Editors). 1996. An introduction to the aquatic insects of North America. 3rd ed. Kendall/Hunt Publishing, Dubuque, Iowa.Google Scholar
Muirhead-Thomson, R.C. 1987. Pesticide impact on stream fauna with special reference to stream macroinvertebrates. Cambridge University Press, Melbourne, Australia.CrossRefGoogle Scholar
Mutch, J.P., Savard, M.A., Julien, G.R.J., MacLean, B., Raymond, B., and Doull, J. 2002. Pesticide monitoring and fish kill investigations on Prince Edward Island, 1994–1999. In Effects of land use practices on fish, shellfish, and their habitats on Prince Edward Island. Edited by Cairns, D.K.. Canadian Technical Report of Fisheries and Aquatic Sciences No. 2408. pp. 94115.Google Scholar
Pesticide Action Network. 2006. PAN pesticides database [online]. Available from http://www.pesticideinfo.org/Index.html [accessed 28 November 2006].Google Scholar
PEI Environment. 2000. Corporate Resource Inventory 2000. PEI Government Division of Environment, Charlottetown, Prince Edward Island. Available from http://www.gov.pe.ca/gis.Google Scholar
Purcell, L.A. 2003. The river runs through it: evaluation of the effects of agricultural land use practises on macroinvertebrates in Prince Edward Island streams, using both new and standard methods. M.Sc. thesis, University of Prince Edward Island, Charlottetown.Google Scholar
Reynoldson, T.B., and Wright, J.F. 2000. The reference condition: problems and solutions. In Assessing the biological quality of fresh waters: RIVPACS and other techniques. Edited by Wright, J.F., Sutcliffe, D.W., and Furse, M.T.. Freshwater Biological Association, Ambleside, Cumbria, United Kingdom. pp. 293304.Google Scholar
Reynoldson, T.B., Norris, R.H., Resh, V.H., Day, K.E., and Rosenberg, D.M. 1997. The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society, 16: 833852.CrossRefGoogle Scholar
Rosenberg, D.M., and Resh, V. 1993. Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York.Google Scholar
Sibley, P.K., and Kaushik, N.K. 1991. Impact of a pulse application of permethrin on the macroinvertebrate community of a headwater stream. Environmental Pollution, 70: 3555.CrossRefGoogle ScholarPubMed
Tabachnik, B.G., and Fidell, L.S. 1996. Using multivariate statistics. 3rd ed. Harper Collins, New York.Google Scholar
Thorpe, J.H., and Covich, A.P. (Editors). 2001. Ecology and classification of North American freshwater invertebrates. 2nd ed. Academic Press, San Diego, California.Google Scholar
US EPA. 1998. Azinphos Methyl. Case number: 0234. Chemical number: 058001 [online]. Available from http://www.epa.gov/pesticides/op/azinphos/azm_01.pdf [accessed 1 June 2006].Google Scholar
US EPA. 2001. Interim reregistration eligibility decision for azinphos-methyl. Case no. 0235 [online]. Available from http://www.epa.gov/REDs/azinphosmethyl_ired.pdf [accessed 1 June 2006].Google Scholar
US EPA. 2006. ECOTOX database [online]. Available from http://cfpub.epa.gov/ecotox/ecotox_home.cfm [updated 27 November 2006; accessed 28 November 2006].Google Scholar
US National Library of Medicine. 2006. Hazardous Substances Data Bank [online]. Available from http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB [accessed 28 November 2006].Google Scholar
van den Brink, P.J., Wingaarden, R.P.A., Lucassen, W.G.H., Brock, T.C.M., and Leeuwangh, P. 1996. Effects of the insecticide Dursban®4E (active ingredient Chlorpyrifos) in outdoor experimental ditches: II. Invertebrate community responses and recovery. Environmental Toxicology and Chemistry, 15: 11431153.CrossRefGoogle Scholar
Wallace, J.B. 1996. Biotic indices and stream ecosystem processes: results from an experimental study. Ecological Applications, 6: 140151.CrossRefGoogle Scholar
Wallace, R.R., and Hynes, H.B.N. 1975. The catastrophic drift of stream insects after treatments with methoxychlor (1,1,1-trichloro-2,2-bis(p-methoxyphenyl)ethane). Environmental Pollution, 8: 225268.Google Scholar
Whiles, M.R., and Wallace, J.B. 1995. Macroinvertebrate production in a headwater stream during recovery from anthropogenic disturbance and hydrological extremes. Canadian Journal of Fisheries and Aquatic Sciences, 52: 24022422.CrossRefGoogle Scholar
Wogram, J., and Liess, M. 2001. Rank ordering of macroinvertebrate species sensitivity to toxic compounds by comparison with that of Daphnia magna. Bulletin of Environmental Contamination and Toxicology, 67: 360367.Google ScholarPubMed