Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T05:03:14.571Z Has data issue: false hasContentIssue false

THE EFFECT OF TEMPERATURE AND FOOD DEPRIVATION ON SURVIVAL OF FIRST-INSTAR DOUGLAS-FIR TUSSOCK MOTHS (ORGYIA PSEUDOTSUGATA) (LEPIDOPTERA: LYMANTRIIDAE)

Published online by Cambridge University Press:  31 May 2012

Roy C. Beckwith
Affiliation:
USDA Forest Service, Pacific Northwest Forest and Range Experiment Station, Foresuy Sciences Laboratory, Corvallis, Oregon 97331

Abstract

Mortality of neonatal Douglas-fir tussock moth larvae varied from 0% to 100% depending on the rearing temperature and duration of food deprivation. Lower temperatures apparently favor larval survival under starvation conditions. For each period of food deprivation, mortality occurs earlier as the temperature increases; this shift to earlier mortality was significant at P <.01. Some implications are discussed.

Résumé

La mortalité chez des larves nouvellement écloses de la chenille à houppes du Douglas a varié de 0 à 100% dépendant de la température d'élevage et de la durée du jeûne. Les basses températures ont semblé favoriser la survie pour les larves privées de nourriture. Pour les différentes durées de jeûne testées, la mortalité est survenue plus tôt à mesure qu'augmentait la température, cette tendance étant significative à P <.01. La discussion porte sur certaines implications de ces observations.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beckwith, R. C. 1976. Influence of host foliage on the Douglas-fir tussock moth. Environ. Ent. 5: 7377.CrossRefGoogle Scholar
Beckwith, R. C. and Stelzer, M. J.. 1979. The duration of cold storage and eclosion of the Douglas-fir tussock moth. Ann. ent. Soc. Am. 72: 158161CrossRefGoogle Scholar
Chapman, R. F. 1969. The Insects: Structure and Function. Amer. Elsevier, N. Y.819 pp.Google Scholar
Cleary, B. D. and Waring, R. H.. 1969. Temperature: collection of data and its analysis for the interpretation of plant growth and distribution. Can. J. Bot. 47: 167173.CrossRefGoogle Scholar
Jackson, D. M. and Harwood, R. F.. 1980. Survival potential of first instars of the codling moth in laboratory experiments. Ann. ent. Soc. Am. 73: 160163.CrossRefGoogle Scholar
Mantel, N. 1966. Evaluation of survival data and two rank order statistics arising in its consideration. Cancer Chemotherapy Rep. 50: 163170.Google ScholarPubMed
Mason, R. R. and Baxter, J. W.. 1970. Food preference in a natural population of the Douglas-fir tussock moth. J. econ. Ent. 63: 12571259.CrossRefGoogle Scholar
Mitchell, R. G. 1979. Dispersal of early instars of the Douglas-fir tussock moth. Ann. ent. Soc. Am. 72: 291297.CrossRefGoogle Scholar
Thompson, C. G. and Peterson, L. J.. 1978. Rearing the Douglas-fir tussock moth. U.S. Dep. Agric., Agric. Handbk. 520 17 pp.Google Scholar
Wickman, B. E. 1976 a. Douglas-fir tussock moth egg hatch and larval development in relation to phenology of grand fir and Douglas-fir in northeastern Oregon. U.S. Dep. Agric. For. Serv. Res. Pap. PNW–206. 13 pp.Google Scholar
Wickman, B. E. 1976 b. Phenology of white fir and Douglas-fir tussock moth egg hatch and larval development in California. Environ. Ent. 5: 316322.CrossRefGoogle Scholar