Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T14:48:49.831Z Has data issue: false hasContentIssue false

EFFECT OF HOST DISTRIBUTION ON PARASITOIDISM OF HOUSE-FLY (DIPTERA: MUSCIDAE) PUPAE BY SPALANGIA SPP. AND MUSCIDIFURAX RAPTOR (HYMENOPTERA: PTEROMALIDAE)

Published online by Cambridge University Press:  31 May 2012

Gary D. Propp
Affiliation:
Insects Affecting Man and Animals Research Laboratory, Agricultural Research Service, USDA, PO Box 14565, Gainesville, FL 32604
Philip B. Morgan
Affiliation:
Insects Affecting Man and Animals Research Laboratory, Agricultural Research Service, USDA, PO Box 14565, Gainesville, FL 32604

Abstract

The solitary, pupal parasitoids Spalangia spp. Muscidifurax raptor oviposited supernumerary eggs on house-fly pupae exposed at 3 poultry farms in north central Florida. The percentage total parasitoidism at the 3 sites was 23.7%, 33.6%, and 77.5%, while the percentage of the hosts containing supernumerary parasitoids was 6.2%, 10.7%, and 55.8%, respectively. The average number of parasitoids found per parasitoidized pupa ranged from 1.45 to 2.96. The parasitoids did not show a density-dependent response to spatial variation in host density. Among aggregates of hosts that contained at least 1 parasitoid, percentage total parasitoidism either decreased as host density increased or was unrelated to host density. When total parasitoidism was low, females tended to avoid already parasitoidized hosts. When total parasitoidism was high, more of the hosts contained multiple parasitoids than a single parasitoid.

Résumé

Les parasitoïdes solitaires de pupes Spalangia spp. et Muscidifurax raptor ont pondu des oeufs surnuméraires dans des pupes de mouche domestique exposées sur le site de 3 fermes du centre nord de la Floride. Le pourcentage total de parasitisme aux 3 sites était de 23,7%, 33,6% et 77,5%, et le pourcentage d'hôtes contenant des parasitoïdes surnuméraires était de 6,2%, 10,7% et 55,8%, respectivement. Le nombre moyen de parasitoïdes par pupe parasitée a varié de 1,45 à 2,96. Les parasitoïdes n'ont pas montré de réponse du type dépendante de la densité vis-à-vis la variation spatiale de la densité d'hôtes. Parmi les groupes d'hôtes contenant au moins un parasitoïde, le pourcentage total de parasitisme a baissé, ou n'était pas lié, avec la densité d'hôtes. Lorsque le parasitisme total était bas, les femelles tendaient à éviter les hôtes déjà parasités. Lorsque le parasitisme total était élevé, un plus grand nombre d'hôtes contenaient des parasitoïdes surnuméraires.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ables, J.R., and Shepard, M.R. 1976. Seasonal abundance and activity of indigenous hymenopterous parasitoids attacking the house fly (Diptera: Muscidae). Can. Ent. 108: 841844.CrossRefGoogle Scholar
Chesson, J. 1982. Estimation and analysis of parasitoid search and attack parameters from field data. Environ. Ent. 11: 531537.CrossRefGoogle Scholar
Gerling, D. 1967. The eggs of the pupal parasites of Musca domestica L. Israel J. Ent. 2: 1113.Google Scholar
Gerling, D., and Legner, E.F. 1968. Developmental history and reproduction of Spalangia cameroni, parasite of synanthropic flies. Ann. ent. Soc. Am. 61: 14361443.CrossRefGoogle Scholar
Legner, E.F. 1967. Behavior changes the reproduction of Spalangia cameroni, S. endius, Muscidifurax raptor, and Nasonia vitripennis (Hymenoptera: Pteromalidae) at increasing fly host densities. Ann. ent. Soc. Am. 60: 819826.CrossRefGoogle Scholar
Legner, E.F. 1977. Temperature, humidity and depth of habitat influencing host destruction and fecundity of muscoid fly parasites. Entomophaga 22: 199206.CrossRefGoogle Scholar
Legner, E.F., and Brydon, H.W. 1966. Suppression of dung-inhabiting fly populations by pupal parasites. Ann. ent. Soc. Am. 59: 638651.CrossRefGoogle ScholarPubMed
Legner, E.F., and Dietrick, E.J. 1974. Effectiveness of supervised control practices in lowering population densities of synanthropic flies on poultry ranches. Entomophaga 19: 467478.CrossRefGoogle Scholar
Morgan, P.B., Weidhaas, D.E, and Patterson, R.S. 1981. Programmed releases of Spalangia endius and Muscidifurax raptor (Hymenoptera: Pteromalidae) against estimated populations of Musca domestica (Diptera: Muscidae). J. Med. Ent. 18: 158166.CrossRefGoogle Scholar
Morrison, G., Lewis, W.J, and Nordlund, D.A. 1980. Spatial differences in Heliothis zea egg density and the intensity of parasitism by Trichogramma spp.: an experimental analysis. Environ. Ent. 9: 7985.CrossRefGoogle Scholar
Morrison, G., and Strong, D.R Jr., 1980. Spatial variations in host density and the intensity of parasitism: some empirical examples. Environ. Ent. 9: 149152.CrossRefGoogle Scholar
Morrison, G., and Strong, D.R Jr., 1981. Spatial variation in egg density and the intensity of parasitism in a neotropical chrysomelid (Cephaloleia consanguinea). Ecol. Ent. 6: 5561.CrossRefGoogle Scholar
Propp, G.D., and Morgan, P.B. 1983 a. Multiparasitism of house fly, Musca domestica L., pupae by Spalangia endius Walker and Muscidifurax raptor Girault and Sanders (Hymenoptera: Pteromalidae). Environ. Ent. 12: 12321238.CrossRefGoogle Scholar
Propp, G.D., and Morgan, P.B. 1983 b. Superparasitism of house fly (Musca domestica L.) pupae by Spalangia endius Walker (Hymenoptera: Pteromalidae). Environ. Ent. 12: 561566.CrossRefGoogle Scholar
Propp, G.D., and Morgan, P.B. 1984. Effect of parasitoid/host ratio on superparasitism of house fly (Diptera: Muscidae) pupae by Spalangia endius Walker (Hymenoptera: Pteromalidae). J. Kansas Ent. Soc. 57: 617621.Google Scholar
Rutz, D.A., and Axtell, R.C. 1979. Sustained releases of Muscidifurax raptor (Hymenoptera: Pteromalidae) for house fly (Musca domestica) control in two types of caged-layer poultry houses. Environ. Ent. 8: 11051110.CrossRefGoogle Scholar
Salt, G. 1961. Competition among insect parasitoids. Symp. Soc. exp. Biol. 15: 96119.Google Scholar
van Lenteren, J.C. 1976. The development of host discrimination and the prevention of superparasitism in the parasite Pseudeucoila bochei Weld (Hym: Cynipidae). Neth. J. Zool. 26: 183.CrossRefGoogle Scholar
van Lenteren, J.C. 1981. Host discrimination by parasitoids. pp. 153–179 in Nordlund, D.A, Jones, R.L, and Lewis, W.J (Eds.), Semiochemicals, their role in pest control. J. Wiley and Sons, NY. 306 pp.Google Scholar
Waage, J.K. 1979. Foraging for patchily-distributed hosts by the parasitoid, Nemeritis canescens. J. Anim. Ecol. 48: 353371.CrossRefGoogle Scholar
Weidhaas, D.E., Haile, D.G, Morgan, P.B, and La Brecque, G.C. 1977. A model to simulate control of house flies with a pupal parasite, Spalangia endius. Environ. Ent. 6: 489500.CrossRefGoogle Scholar
Wylie, H.G. 1971. Oviposition restraint of Muscidifurax zaraptor (Hymenoptera: Pteromalidae) on parasitized housefly pupae. Can. Ent. 103: 15371544.CrossRefGoogle Scholar
Wylie, H.G. 1972 a. Larval competition among three hymenopterous parasite species on multiparasitized housefly (Diptera) pupae. Can. Ent. 104: 11811190.CrossRefGoogle Scholar
Wylie, H.G. 1972 b. Oviposition restraint of Spalangia cameroni (Hymenoptera: Pteromalidae) on parasitized housefly pupae. Can. Ent. 104: 209214.CrossRefGoogle Scholar