Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T12:08:00.392Z Has data issue: false hasContentIssue false

THE EFFECT OF HIGH TEMPERATURE STORAGE ON THE CAPACITY OF AN ICE-NUCLEATING-ACTIVE BACTERIUM AND FUNGUS TO REDUCE INSECT COLD-TOLERANCE1

Published online by Cambridge University Press:  31 May 2012

Paul Fields*
Affiliation:
Agriculture and Agri-Food Canada, Research Centre, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
Stéphan Pouleur
Affiliation:
Agriculture et Agro-Alimentaire Canada, Centre de recherches, 2560 Boulevard Hochelaga, Sainte-Foy (Québec), Canada G1V 2J3
Claude Richard
Affiliation:
Agriculture et Agro-Alimentaire Canada, Centre de recherches, 2560 Boulevard Hochelaga, Sainte-Foy (Québec), Canada G1V 2J3
*
2Author to whom correspondence should be addressed.

Abstract

Cold treatment is used to control the rusty grain beetle (Cryptolestes ferrugineus) (Coleoptera: Cucujidae), the predominant insect pest of stored grain in Canada. However, because it is difficult to cool the grain enough to control C. ferrugineus quickly, we have examined ways to reduce the cold-tolerance of adult C. ferrugineus, the most cold-hardy stage. We compared the efficacy of two ice nucleators, Pseudomonas syringae and Fusarium avenaceum, to decrease cold-tolerance of this insect, as well as their thermal stability. Ice nuclei from the bacteria P. syringae raised C. ferrugineus supercooling point from −17 to −6 °C, and increased mortality at −9°C for 24 h from 11 to 100%. Pseudomonas syringae held at 30°C for 16 weeks showed only a slight decline in its ability to reduce C. ferrugineus cold-tolerance. The fungus F. avenaceum raised the supercooling point of C. ferrugineus from −17 to −9°C, but only increased the mortality at −9°C for 24 h from 10 to 33%. Wheat treated with F. avenaceum and held at 30°C for 4 weeks reduced the cold-hardiness of C. ferrugineus, but had no effect after 8 weeks at 30°C. One reason for the difference between the two nucleators is that P. syringae had approximately 1000 times more ice nuclei per gram than did F. avenaceum. These results suggest that P. syringae is stable enough to reduce C. ferrugineus cold-tolerance after several weeks on warm grain. We discuss possible ways to increase the ice-nucleating activity of F. avenaceum.

Résumé

Le froid est utilisé pour détruire le cucujide roux (Cryptolestes ferrugineus) (Coleoptera : Cucujidae), principal ravageur du grain entreposé au Canada. Nous avons étudié des méthodes pour réduire la tolérance du C. ferrugineus au froid parce qu’il est difficile de refroidir suffisamment le grain pour détruire rapidement cet insecte. Nous avons comparé l’efficacité et la stabilité de deux nucléateurs, le Pseudomonas syringae et le Fusarium avenaceum, pour diminuer la tolérance de cet insecte au froid. Des noyaux glaçogènes produits par le P. syringae ont élevé le point de surfusion du C. ferrugineus de −17 à −6°C et fait passer de 11 à 100% le taux de mortalité après 24 h à −9°C. L’efficacité du P. syringae placé sur du grain a très peu diminué après 16 semaines à 30°C. Le champignon F. avenaceum a élevé le point de surfusion du C. ferrugineus de −17 à −9°C, mais n’a fait passer que de 10 à 33% le taux de mortalité après 24 h à −9 °C. Après 4 semaines à 30°C, le grain traité avec le F. avenaceum a augmenté le taux de mortalité de l’insecte, mais il n’avait plus d’effet après 8 semaines. La concentration de noyaux glaçogènes, qui est 1000 fois plus grande chez le P. syringae que chez le F. avenaceum, peut expliquer cette différence d’efficacité. Ces résultats suggèrent que le P. syringae est assez stable pour réduire la tolérance du C. ferrugineus au froid après plusieurs semaines sur le grain chaud. On discute des façons possibles d’augmenter l’activité glaçogène du F. avenaceum.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Winnipeg Research Station Contribution No. 1571.

References

Abramson, D., Clear, R.M., and Smith, D.M.. 1993. Trichothecene production by Fusarium spp. isolated from Manitoba grain. Canadian Journal of Plant Pathology 15: 147152.CrossRefGoogle Scholar
Alagusundaram, K., Jayas, D.S., White, N.D.G., and Muir, W.E.. 1990. Three dimensional, finite element, heat transfer model of temperature distribution in grain storage bins. Transactions of the American Society of Agricultural Engineers 33: 577584.Google Scholar
ASAE Standards, 37th ed. 1990. Standard S352.2, Moisture Measurement — Unground Grain and Seeds. ASAE, St. Joseph, MI.Google Scholar
Fields, P.G. 1990. The cold-hardiness of Cryptolestes ferrugineus and the use of ice-nucleation-active bacteria as a cold-synergist. pp. 11831191in Fleurat-Lessard, F., and Ducom, P. (Eds.), Proceedings of the Fifth International Working Conference on Stored-Product Protection. Bordeaux, France.Google Scholar
Fields, P.G. 1992. The control of stored-product insects and mites with extreme temperatures. Journal of Stored Product Research 28: 89118.Google Scholar
Fields, P.G. 1993. Reduction of cold tolerance of stored-product insects by ice-nucleating active bacteria. Environmental Entomology 22: 470476.CrossRefGoogle Scholar
Lee, R.E., Lee, M.R., and Strong-Gunderson, J.M.. 1993. Insect cold-hardiness and ice nucleating active micro-organisms including their potential use for biological control. Journal of Insect Physiology 39: 112.Google Scholar
Lee, R.E., Strong-Gunderson, J.M., Lee, M.R., and Davidson, E.C.. 1992. Ice nucleating active bacteria decrease the cold-hardiness of stored grain insects. Journal of Economic Entomology 85: 371374.Google Scholar
Levinson, H.Z., and Levinson, A.R.. 1989. Food storage and protection in ancient Egypt. Boletin de Sanidad Vegetal 17: 475482.Google Scholar
Madrid, F.J., White, N.D.G., and Loschiavo, S.R.. 1990. Insects in stored cereals, and their association with farming practices in southern Manitoba. The Canadian Entomologist 122: 515523.CrossRefGoogle Scholar
Marasas, W.F.O., Nelson, P.E., and Toussoun, T.A.. 1984. Toxigenic Fusarium Species: Identity and Mycotoxicology. Pennsylvania State University Press, University Park, PA.Google Scholar
Margaritis, A., and Bassi, A.S.. 1991. Principles and biotechnological applications of bacterial ice nucleation. Critical Reviews in Biotechnology 11: 277295.CrossRefGoogle ScholarPubMed
Nemecek-Marshall, M., LaDuca, R., and Fall, R.. 1993. High-level expression of ice nuclei in a Pseudomonas syringae strain is induced by nutrient limitation and low temperature. Journal of Bacteriology 175: 40624070.Google Scholar
Pouleur, S., Richard, C., Brochu, G., Laberge, S., Vézina, L., Martin, J.G., and Antoun, H.. 1992 a. Caractérisation de l'activité glacogène chez le Fusarium avenaceum et le F. acuminatum. 84th Annual Meeting of the Quebec Society for the Protection of Plants, June 4–5, Lac Delage, Quebec, Canada. Phytoprotection 73: 129 (abstract).Google Scholar
Pouleur, S., Richard, C., Martin, J.-G., and Antoun, H.. 1992 b. Ice nucleation activity in Fusarium acuminatum and Fusarium avenaceum. Applied and Environmental Microbiology 58: 29602964.Google Scholar
Smith, L.B. 1970. Effects of cold-acclimation on supercooling and survival of the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae) at sub-zero temperatures. Canadian Journal of Zoology 48: 853858.Google Scholar
Strong-Gunderson, J.M., Lee, R.E., Lee, M.R., and Riga, T.J.. 1990. Ingestion of ice-nucleating active bacteria increases the supercooling point of the beetle Hippodamia convergens. Journal of Insect Physiology 36: 153157.CrossRefGoogle Scholar
Tsumuki, H., Konno, H., Maeda, T., and Okamoto, Y.. 1992. An ice-nucleating active fungus isolated from the gut of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Journal of Insect Physiology 38: 119125.Google Scholar
Turner, M.A., Arellano, F., and Kozloff, L.M.. 1990. Three separate classes of bacterial ice nucleation structures. Journal of Bacteriology 172: 25212526.Google Scholar
Winston, P.W., and Bates, D.H.. 1960. Saturated solutions for the control of humidity in biological research. Ecology 41: 232237.CrossRefGoogle Scholar
Yaciuk, G., Muir, W.E., and Sinha, R.N.. 1975. A simulation model of temperatures in stored grain. Journal of Agricultural Engineering Research 20: 245258.CrossRefGoogle Scholar