Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T00:31:15.939Z Has data issue: false hasContentIssue false

The effect of exposure to conspecifics on restlessness in the parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae)

Published online by Cambridge University Press:  02 April 2012

B.H. King
Affiliation:
Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, United States of America (e-mail: [email protected])

Abstract

When habitat quality is variable, there should be strong selection for the ability to detect and respond to the variation. Adult females of the parasitoid wasp Nasonia vitripennis (Walker) are known to increase their restlessness (the proportion of time in locomotion) both during and after exposure to a poor quality host. Doing so provides a mechanism for leaving a poor host and potentially finding a better host. This study examined whether restlessness also changes in response to competition as indicated by the presence of adult conspecifics. Both restlessness and the probability of dispersing across an inhospitable environment were greater when a female was with another female than when she was alone. However, restlessness did not remain elevated after the other female was removed. In contrast with females, restlessness of males did not increase either during or after exposure to other males, and the probability of dispersing across an inhospitable environment was unaffected by the presence of another male. The difference between females and males may be related to differences in dispersal ability and in the abundance and distribution of hosts versus mates.

Résumé

Lorsque la qualité de l'habitat est variable, il devrait y avoir une forte sélection de la capacité de déceler cette variation et d'y réagir. Les femelles adultes de la guêpe parasitoïde Nasonia vitripennis (Walker) sont connues pour augmenter leur agitation (le pourcentage du temps consacré aux déplacements) au moment où elles sont mises en présence d'un hôte de faible qualité et durant la période qui suit. Cela leur procure un mécanisme pour abandonner un hôte peu intéressant et pour potentiellement en trouver un meilleur. La présente étude examine si l'agitation change aussi en réaction à la compétition marquée par la présence d'adultes de la même espèce. Lorsqu'une femelle est en présence d'une autre femelle, son agitation ainsi que la probabilité qu'elle traverse un environnement hostile sont plus grandes que lorsqu'elle est seule. Cependant, l'agitation accrue ne se prolonge pas lorsque l'autre femelle est retirée. Contrairement aux femelles, les mâles ne s'agitent pas plus durant ou après une rencontre avec d'autres mâles; leur probabilité de se déplacer vers un environnement hostile n'est pas affectée par la présence d'un autre mâle. La différence entre les femelles et les mâles peut être reliée à des différences dans leur pouvoir de dispersion et dans l'abondance et la répartition des hôtes plutôt que celles des partenaires.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altson, A.M. 1920. The life-history and habits of two parasites of blowflies. Proceedings of the Zoological Society, 15: 195243.CrossRefGoogle Scholar
Ashworth, J.R., and Wall, R. 1995. Effects of ovarian development and protein deprivation on the activity and locomotor responses of the blowfly, Lucilia sericata, to liver odour. Physiological Entomology, 20: 281285.CrossRefGoogle Scholar
Berggren, Å. 2005. The effect of conspecifics on individual male movement in Roesel's bush-cricket Metrioptera roeseli. Ecological Entomology, 30: 480483. doi:10.1111/j.0307–6946.2005.00709.x.CrossRefGoogle Scholar
Brzek, P., and Konarzewski, M. 2001. Effect of food shortage on the physiology and competitive abilities of sand martin (Riparia riparia) nestlings. Journal of Experimental Biology, 204: 30653074. Available from http://jeb.biologists.org/cgi/reprint/204/17/3065 [accessed 19 December 2006].CrossRefGoogle Scholar
Caldwell, R.L. 1974. A comparison of the migratory strategies of two milkweed bugs, Oncopeltus fasciatus and Lygaeus kalmii. In Experimental analysis of insect behaviour. Edited by Browne, L.B.. Springer-Verlag, , Berlin. pp. 304316.CrossRefGoogle Scholar
Goubault, M., Outreman, Y., Poinsot, D., and Cortesero, A.M. 2005. Patch exploitation strategies of parasitic wasps under intraspecific competition. Behavioural Ecology and Sociobiology, 16: 693701. doi:10.1093/beheco/ari043.CrossRefGoogle Scholar
Keaser, T., Shmida, A., and Motro, U. 1996. Innate movement rules in foraging bees — flight distances are affected by recent rewards and are correlated with choice of flower type. Behavioural Ecology and Sociobiology, 39: 381388. doi:10.1007/s002650050304.CrossRefGoogle Scholar
King, B.H. 1993. Flight activity in the parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). Journal of Insect Behavior, 6: 313321.CrossRefGoogle Scholar
King, B.H., and Ellison, J.H. 2006. Resource quality affects restlessness in the parasitoid wasp Nasonia vitripennis. Entomologia Experimentalis et Applicata, 118: 7176. doi:10.1111/j.1570–7458.2006.00367.x.CrossRefGoogle Scholar
King, P.E., Askew, R.R., and Sanger, C. 1969. The detection of parasitized hosts by males of Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) and some possible implications. Proceedings of the Royal Entomological Society of London A, 44: 8590.CrossRefGoogle Scholar
King, B.H., Crowe, M.L., and Skinner, S.W. 1995. Effect of host density on offspring sex ratios and behavioral interactions between females in the parasitoid wasp Nasonia vitripennis (Hymenoptera, Pteromalidae). Journal of Insect Behavior, 8: 89102.CrossRefGoogle Scholar
Ohno, K. 1999. Brood guarding in Trissolcus basalis (Watanabe) (Hymenoptera: Scelionidae), an egg parasitoid of the brownwinged green bug, Plautia crossata stali Scott (Heteroptera: Pentatomidae). Entomological Science, 2: 4147.Google Scholar
Rankin, M.A., and Riddiford, L.M. 1977. Hormonal control of migratory flight in Oncopeltus fasciatus: the effects of the corpus cardiacum, corpus allatum, and starvation on migration and reproduction. General Comparative Endocrinology, 33: 309321.CrossRefGoogle ScholarPubMed
Rueda, L.M., and Axtell, R.C. 1985. Guide to common species of pupal parasites (Hymenoptera: Pteromalidae) of the house fly and other muscoid flies associated with poultry and livestock manure. North Carolina Agricultural Research Service Technical Bulletin 278.Google Scholar
Saeki, Y., Kruse, K.C., and Switzer, P.V. 2005. The social environment affects mate guarding behavior in Japanese beetles, Popillia japonica. Journal of Insect Science, 5: 18. Available from [accessed 28 March 2007].CrossRefGoogle ScholarPubMed
Saks, M.E., Rankin, M.A., and Stinner, R.E. 1988. Sexually differentiated flight responses of the Mexican bean beetle to larval and adult nutrition. Oecologia, 75: 296302.CrossRefGoogle ScholarPubMed
Skalicki, N., Heran, H., and Crailsheim, K. 1988. Water budget of the honeybee during rest and flight. Biona report 6. In The flying honeybee — aspects of energetics. Edited by Nachtigall, W.. Fischer, Gustav, Stuttgart, Germany. pp. 103118.Google Scholar
van den Assem, J., Jachmann, F., and Simbolotti, P. 1980. Courtship behavior of Nasonia vitripennis (Hym, Pteromalidae): some qualitative, experimental evidence for the role of pheromones. Behaviour, 75: 301307.CrossRefGoogle Scholar
Visser, M.E., van Alphen, J.J.M., and Nell, H.W. 1992. Adaptive superparasitism and patch time allocation in solitary parasitoids: the influence of pre-patch experience. Behavioural Ecology and Sociobiology, 31: 163171. doi:10.1007/BF00168643.CrossRefGoogle Scholar
Wajnberg, E. 2006. Time allocation strategies in insect parasitoids: from ultimate predictions to proximate behavioral mechanisms. Behavioural Ecology and Sociobiology, 60: 589611. doi:10.1007/s00265-006-0198–9.CrossRefGoogle Scholar
Werren, J.H. 1983. Sex ratio evolution under local mate competition in a parasitic wasp. Evolution, 37: 116124.CrossRefGoogle Scholar
Werren, J.H. 1984. Brood size and sex ratio regulation in the parasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). Netherlands Journal of Zoology, 34: 123143.CrossRefGoogle Scholar
Whiting, A.R. 1967. The biology of the parasitic wasp Mormoniella vitripennis (=Nasonia brevicornis) (Walker). Quarterly Review of Biology, 42: 333406.CrossRefGoogle Scholar
Wylie, H.G. 1965. Effects of superparasitism on Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae). The Canadian Entomologist, 97: 326331.CrossRefGoogle Scholar
Wylie, H.G. 1966. Some effects of female parasite size on reproduction of Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae). The Canadian Entomologist, 98: 196198.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical analysis. 2nd ed. Prentice-Hall Inc., Englewood Cliffs, New Jersey.Google Scholar