Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T00:09:16.257Z Has data issue: false hasContentIssue false

DIATOMACEOUS EARTH TO CONTROL CRYPTOLESTES FERRUGINEUS (COLEOPTERA: CUCUJIDAE) IN STORED BARLEY IN FARM GRANARIES1

Published online by Cambridge University Press:  31 May 2012

Paul G. Fields*
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
Zlatko Korunic
Affiliation:
Hedley Technologies Inc., 14 Grenwich Drive, Guelph, Ontario, Canada N1H 8B8
*
2 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

Granary trials to determine the efficacy of an enhanced diatomaceous earth (DE) formulation (Protect-It™) at 0.15 kg DE/t grain to control grain-feeding beetles in barley, Hordeum vulgare L. (Poaceae), were conducted at Glenlea, Manitoba. During the test, the grain moisture content ranged from 11 to 13%, and grain temperature ranged from 27 to 2 °C. The bulk density of barley was reduced 10–20 kg/m3 by the addition of diatomaceous earth. Adults of the rusty grain beetle, Cryptolestes ferrugineus (Stephens), were released onto the top surface of the grain of each granary, producing an average density of approximately 4 insects/kg grain. Using Berlese funnels to extract insects from grain samples there was a 95% reduction in adults and an 80% reduction in larvae found in treated grain compared with untreated grain, 1 month after releasing insects into the grain. There was a 95% or greater decrease in the total number of insects caught with probe pitfall traps in the treated barley compared with the untreated barley for all sampling dates. For the confined populations, 200 adult C. ferrugineus or Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) (red flour beetle) were held in screened jars in the grain until the end of October, and there was over a 99% reduction in both insect species, compared with insects held on untreated grain. These results indicate that this diatomaceous earth formulation can control C. ferrugineus in barley in granaries at 0.15 kg DE/t grain.

Résumé

Des essais en silo de grain ont été réalisés à Glenlea, au Manitoba afin de déterminer l’efficacité d’une formulation améliorée de terre de diatomées (Protect-ItMC) à 0,15 kg terre de distomées/t de grain dans la lutte contre les coléoptères granivores de l’orge, Hordeum vulgare L. (Poaceae). Durant l’essai, la teneur en eau du grain a varié entre 11 et 13%, la température variant de 27 à 2 °C. Le poids spécifique apparent de l’orge a diminué entre 10 et 20 kg/m3 suite à l’addition de la terre de diatomées. Des adultes du cucujide roux, Cryptolestes ferrugineus (Stephens), ont été relâchés à la surface du grain de chaque silo à grain, pour atteindre une répartition de 4 insectes/kg de grain. L’extraction des insectes dans les échantillons de grain, à l’aide d’extracteurs de Berlese, a démontré une réduction de population de 95% chez les adultes et de 80% chez les larves présents dans le grain traité par rapport au grain non-traité, un mois après l’introduction des insectes dans le grain. La baisse du nombre d’insectes pris aux pièges à fosse cylindriques dans l’orge traité était de 95% ou plus, par rapport à l’orge non-traité et pour toutes les dates d’échantillonnage. Des populations captives de 200 adultes de C. ferrugineus ou de Tribolium castaneum (Herbst) (Coleoptera : Tenebrionidae), ont été renfermées dans des bocaux à couvercle grillagé, gardés dans le grain jusqu’à la fin d’octobre. Ces insectes ont affiché une mortalité de 99% chez les deux espèces par rapport aux insectes gardés dans le grain non-traité. Les résultats ont démontré que cette formulation de terre de diatomées était efficace à 0,15 kg terre de diatomées/t de grain contre C. ferrugineus dans l’orge en silo à grain.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution No. 1756 of the Cereal Research Centre, Winnipeg.

References

Banks, H.J., Fields, P.G. 1995. Physical methods for insect control in stored grain ecosystem. pp. 353410in Jayas, D.S., White, N.D.G., Muir, W.E. (Eds.), Stored-grain ecosystems. New York: Marcel-Dekker Inc.Google Scholar
Canada Department of National Health and Welfare. 1981. Departmental consolidation of the food and drugs regulations, with amendments to December 15, 1993. Canada Department of National Health and Welfare Publication 67–1BGoogle Scholar
Ebeling, W. 1971. Sorptive dusts for pest control. Annual Review of Entomology 16: 123–58CrossRefGoogle ScholarPubMed
Fargo, W.S., Epperly, D., Cuperus, G.W., Clary, B.C., Noyes, R. 1989. Effect of temperature and duration of trapping on four stored grain insect species. Journal of Economic Entomology 82: 970–3CrossRefGoogle Scholar
Fields, P.G., Korunic, Z. 2000. The effect of grain moisture content and temperature on the efficacy of diatomaceous earths from different geographical locations against stored-product beetles. Journal of Stored Products Research. In pressCrossRefGoogle Scholar
Flinn, P.W., Hagstrum, D.W. 1998. Distribution of Cryptolestes ferrugineus (Coleoptera: Cucujidae) in response to temperature gradients in stored wheat. Journal of Stored Products Research 34: 107–12CrossRefGoogle Scholar
Jayas, D.S. 1995. Mathematical modelling of heat, moisture, and gas transfer in stored-grain ecosystems. pp. 527–67 in Jayas, D.S., White, N.D.G., Muir, W.E. (Eds.), Stored-grain ecosystems. New York: Marcel Dekker Inc.Google Scholar
Korunic, Z. 1997. Rapid assessment of the insecticidal value of diatomaceous earths without conducting bioassays. Journal of Stored Products Research 33: 219–29CrossRefGoogle Scholar
Korunic, Z. 1998. Diatomaceous earth, a group of natural insecticides. Journal of Stored Products Research 34: 8797CrossRefGoogle Scholar
Korunic, Z., Fields, P.G. 1995. Diatomaceous earth insecticidal composition. USA Patent 5,773,017Google Scholar
Korunic, Z., Fields, P.G., Kovacs, M.I.P., Noll, J.S., Lukow, O.M., Demianyk, C.J., Shibley, K.J. 1996. The effect of diatomaceous earth on grain quality. Post-harvest Biology and Technology 9: 373–87CrossRefGoogle Scholar
Korunic, Z., Cenkowski, S., Fields, P. 1998. Grain bulk density as affected by diatomaceous earth and application method. Post-harvest Biology and Technology 13: 81–9CrossRefGoogle Scholar
Loschiavo, S.R. 1983. Distribution of the rusty grain beetle (Coleoptera: Cucujidae) in columns of wheat stored dry or with localized high moisture content. Journal of Economic Entomology 76: 881–4CrossRefGoogle Scholar
Madrid, F.J., White, N.D.G., Loschiavo, S.R. 1990. Insects in stored cereals, and their association with farming practices in southern Manitoba. The Canadian Entomologist 122: 515–23CrossRefGoogle Scholar
Plarre, R., Vanderwel, D.C. 1999. Stored product beetles. pp. 149198in Hardie, J., Minks, A.K. (Eds.), Pheromones of non-lepidopteran insects associated with agricultural plants. Wallingford: CABI PublishingGoogle Scholar
Round, F.E., Crawford, R.M., Mann, D.G. 1990. The diatoms: biology and morphology of the genera. Cambridge: Cambridge University PressGoogle Scholar
Sinha, R.N., Watters, F.L. 1985. Insect pests of flour mills. Grain elevators and feed mills and their control. Agriculture Canada: OttawaGoogle Scholar
Smith, L.B. 1977. Efficiency of Berlese-Tullgren funnels for removal of the rusty grain beetle, Cryptolestes ferrugineus, from wheat samples. The Canadian Entomologist 109: 503–9CrossRefGoogle Scholar
Subramanyam, B., Hagstrum, D. 1995. Resistance measurement and management. pp. 331–98 in Subramanyam, B., Hagstrum, D.W. (Eds.), Integrated management of insects in stored products. New York: Marcel Dekker Inc.Google Scholar
Subramanyam, B., Swanson, C.L., Madamanchi, N., Norwood, S. 1994. Effectiveness of Insecto, a new diatomaceous earth formulation, in suppressing several stored-grain insect pests. pp. 650–9 in Proceedings of the 6th International Working Conference on Stored Product Protection, Canberra. Wallingford: CAB InternationalGoogle Scholar
Subramanyam, B., Madamanchi, N., Norwood, S. 1998. Effectiveness of Insecto applied to shelled maize against stored-product insect larvae. Journal of Economic Entomology 91: 280–6CrossRefGoogle Scholar
Trisvyatskii, L.A. 1969. Storage of grain. Yorkshire: National Lending Library for Science and Technology [Translated by Keane, D.M.; edited by Kent, N.L. and Freemont, J.A..]Google Scholar
U.S. Environmental Protection Agency. 1991. EPA R.E.D. facts: silicon dioxide and silica gel. U.S. Environmental Protection Agency EPA–738–F–91–107Google Scholar
White, G.D., Berndt, W.L., Schesser, J.H., Wilson, J.L. 1966. Evaluation of four inert dusts for the protection of stored wheat in Kansas from insect attack. U.S. Department of Agriculture Agriculture Research Service Report 51–8Google Scholar
White, N.D.G., Arbogast, R.T., Fields, P.G., Hillmann, R.C., Loschiavo, S.R., Subramanyam, B., Throne, J.E., Wright, V.F. 1990. The development and use of pitfall and probe traps for capturing insects in stored grain. Journal of the Kansas Entomological Society 63: 506–25Google Scholar
Woods, S.M., White, N.D.G., Sinha, R.N. 1997. Simulation of generation times of the rusty grain beetle, Cryptolestes ferrugineus, in farm-stored grain in the Canadian Prairies, 1952–1990. Researches on Population Ecology 39: 4756CrossRefGoogle Scholar
World Health Organization. 1987. Silica and some silicates. IARC Monograph Series 42Google Scholar