Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T09:17:27.017Z Has data issue: false hasContentIssue false

Diapause expression in a Québec, Canada population of the parasitoid Aphidius ervi (Hymenoptera: Braconidae)

Published online by Cambridge University Press:  07 March 2019

Kévin Tougeron*
Affiliation:
Département de sciences biologiques, Institut de recherche en biologie végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada Unité Mixte de Recherche 6553 – Ecobio (Ecosystèmes, biodiversité, évolution), Centre national de la recherche scientifique, Université de Rennes, 263 Avenue du Général Leclerc, 35000 Rennes, France
Joan van Baaren
Affiliation:
Unité Mixte de Recherche 6553 – Ecobio (Ecosystèmes, biodiversité, évolution), Centre national de la recherche scientifique, Université de Rennes, 263 Avenue du Général Leclerc, 35000 Rennes, France
Cécile Le Lann
Affiliation:
Unité Mixte de Recherche 6553 – Ecobio (Ecosystèmes, biodiversité, évolution), Centre national de la recherche scientifique, Université de Rennes, 263 Avenue du Général Leclerc, 35000 Rennes, France
Jacques Brodeur
Affiliation:
Département de sciences biologiques, Institut de recherche en biologie végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
*
1Corresponding author (e-mail: [email protected])

Abstract

Aphidius ervi Haliday (Hymenoptera: Braconidae) is a major natural enemy of several agricultural pests in North America. Yet little is known about its overwintering strategy, especially concerning the plastic response to photoperiod and temperature that induce diapause. Information on parasitoid overwintering patterns is of great importance if we aim to predict their phenology and better inform pest outbreak control. Moreover, there is increasing evidence of plastic and genetic changes in overwintering strategies in insect from temperate areas following climate change. We set up a laboratory approach to better understand the factors acting on diapause induction in A. ervi. We studied the diapause incidence in a population from Québec, Canada, using the combination of two temperatures (14 °C and 20 °C) and three photoperiod treatments (10:14, 12:12, 14:10 [light:dark] hours). We found an effect of both factors on diapause incidence; A. ervi expressed close to 95% of diapause at the most fall-like conditions (14 °C, 10:14 [light:dark] hours) and almost no diapause (3.5%) at the most summer-like conditions tested (20 °C, 14:10 [light:dark] hours). This parasitoid species does have the potential to enter diapause in Québec before lethal frosts, despite a recent introduction from France (1960s), where mild winter occurs compared with Québec.

Résumé

Aphidius ervi Haliday (Hymenoptera: Braconidae) est un des principaux ennemis naturels de plusieurs ravageurs agricoles en Amérique du Nord. Pour autant, on en sait peu sur ses stratégies d’hivernation, en particulier concernant les réponses plastiques à la photopériode et à la température qui induisent la diapause. Obtenir des informations sur les stratégies d’hivernation des parasitoïdes est d’une importance capitale si nous voulons prédire leur phénologie et mieux contrôler les pullulations de ravageurs. De plus, il y a de plus en plus de preuves de changements plastiques ou évolutifs dans les stratégies d’hivernation des insectes de milieux tempérés à cause du changement climatique. Nous avons mis en place une approche de laboratoire visant à mieux comprendre les facteurs agissant sur l’induction de la diapause chez A. ervi. Nous avons étudié les niveaux de diapause chez une population du Québec, Canada, en utilisant la combinaison de deux traitements de températures (14 °C et 20 °C) et trois traitements de photopériode (10:14, 12:12, 14:10 [jour:nuit] heures). Nous avons trouvé un effet des deux facteurs sur les niveaux de diapause; A. ervi a exprimé environ 95% de diapause à la condition la plus automnale testée (14 °C, 10:14 [jour:nuit] heures) et presque aucune diapause (3.5%) à la condition la plus estivale testée (20 °C, 14:10 [jour:nuit] heures). Cette espèce de parasitoïde semble donc avoir la capacité à entrer en diapause au Québec avant que le gel n’apparaisse, malgré une récente introduction depuis la France (années 1960), où des hivers plus doux qu’au Québec ont lieu.

Type
Behaviour and Ecology–NOTE
Copyright
© Her Majesty the Queen in right of Canada 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Véronique Martel

References

Bale, J.S. and Hayward, S.A.L. 2010. Insect overwintering in a changing climate. Journal of Experimental Biology, 213: 980994.CrossRefGoogle Scholar
Björkman, C. and Niemelä, P. (editors). 2015. Climate change and insect pests, CABI Climate Change Series. Centre for Agriculture and Bioscience International, Wallingford, Oxfordshire, United Kingdom.CrossRefGoogle Scholar
Brodeur, J. and McNeil, J.N. 1989. Biotic and abiotic factors involved in diapause induction of the parasitoid, Aphidius nigripes (Hymenoptera: Aphidiidae). Journal of Insect Physiology, 35: 969974.CrossRefGoogle Scholar
Brodeur, J. and McNeil, J.N. 1994. Seasonal ecology of Aphidius nigripes (Hymenoptera: Aphidiidae), a parasitoid of Macrosiphum euphorbiae (Homoptera: Aphididae). Environmental Entomology, 23: 292298.CrossRefGoogle Scholar
Butts, R.A. 1992. Cold hardiness and its relationship to overwintering of the Russian wheat aphid (Homoptera: Aphididae) in southern Alberta. Journal of Economic Entomology, 85: 11401145.CrossRefGoogle Scholar
Campbell, A. and Mackauer, M. 1973. Some climatic effects on the spread and abundance of two parasites of the pea aphid in British Columbia (Hymenoptera: Aphidiidae-Homoptera: Aphididae). Zeitschrift für angewandte Entomologie, 74: 4755.CrossRefGoogle Scholar
Gavolski, J. and Meers, S. 2011. Arthropods of cereal crops in Canadian grasslands. In Arthropods of Canadian grasslands: inhabitants of a changing landscape. Edited by Floate, K.D.. Biological Survey of Canada, Ottawa, Ontario, Canada. Pp. 217237.Google Scholar
Godfray, H.C.J. 1994. Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, New Jersey, United States of America.Google Scholar
Halfhill, J.E., Featherston, P.E., and Dickie, A.G. 1972. History of the Praon and Aphidius parasites of the pea aphid in the Pacific Northwest. Environmental Entomology, 1: 402405.CrossRefGoogle Scholar
Irwin, M.E. and Thresh, J.M. 1988. Long-range aerial dispersal of cereal aphids as virus vectors in North America. Philosophical Transactions of the Royal Society B: Biological Sciences, 321: 421446.CrossRefGoogle Scholar
Pike, K.S., Starỳ, P., Miller, T., Allison, D., Boydston, L., Graf, G., and Gillespie, R. 1997. Small-grain aphid parasitoids (Hymenoptera: Aphelinidae and Aphidiidae) of Washington: distribution, relative abundance, seasonal occurrence, and key to known North American species. Environmental Entomology, 26: 12991311.CrossRefGoogle Scholar
R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Saunders, D., Sutton, D., and Jarvis, R. 1970. The effect of host species on diapause induction in Nasonia vitripennis. Journal of Insect Physiology, 16: 405416.CrossRefGoogle ScholarPubMed
Stary, P. 1974. Taxonomy, origin, distribution and host range of Aphidius species (Hym., Aphidiidae) in relation to biological control of the pea aphid in Europe and North America. Journal of Applied Entomology, 77: 141171.Google Scholar
Tauber, M.J., Tauber, C.A., and Masaki, S. 1986. Seasonal adaptations of insects. Oxford University Press, New York, New York, United States of America.Google Scholar
Tougeron, K., Le Lann, C., Brodeur, J., and van Baaren, J. 2017. Are aphid parasitoids from mild winter climates losing their winter diapause? Oecologia, 183: 619629.CrossRefGoogle ScholarPubMed
Tougeron, K., Van Baaren, J., Llopis, S., Ridel, A., Doyon, J., Brodeur, J., and Le Lann, C. 2018. Disentangling plasticity from local adaptation in diapause expression in parasitoid wasps from contrasting thermal environments: a reciprocal translocation experiment. Biological Journal of the Linnean Society, 124: 756764.CrossRefGoogle Scholar
Vorley, V.T. and Wratten, S.D. 1987. Migration of parasitoids (Hymenoptera: Braconidae) of cereal aphids (Hemiptera: Aphididae) between grassland, early-sown cereals and late-sown cereals in southern England. Bulletin of Entomological Research, 77: 555568.CrossRefGoogle Scholar
Zhu, M., Radcliffe, E.B., Ragsdale, D.W., MacRae, I.V., and Seeley, M.W. 2006. Low-level jet streams associated with spring aphid migration and current season spread of potato viruses in the U.S. northern Great Plains. Agricultural and Forest Meteorology, 138: 192202.CrossRefGoogle Scholar