Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T12:24:25.759Z Has data issue: false hasContentIssue false

DEVELOPMENT OF SAMPLING DESIGNS FOR EGG AND LARVAL POPULATIONS OF THE WHEAT MIDGE, SITODIPLOSIS MOSELLANA (GÉHIN) (DIPTERA: CECIDOMYIIDAE), IN WHEAT1

Published online by Cambridge University Press:  31 May 2012

M.K. Mukerji
Affiliation:
Agriculture Canada Research Station, 107 Science Crescent, Saskatoon, Saskatchewan, Canada S7N OX2
O.O. Olfert
Affiliation:
Agriculture Canada Research Station, 107 Science Crescent, Saskatoon, Saskatchewan, Canada S7N OX2
J.F. Doane
Affiliation:
Agriculture Canada Research Station, 107 Science Crescent, Saskatoon, Saskatchewan, Canada S7N OX2

Abstract

The spatial and statistical distribution of eggs and larvae of the wheat midge, Sitodiplosis mosellana (Géhin), in wheat in northeastern Saskatchewan were investigated. The highest number of each stage occurred in the top third of the head and the lowest in the bottom third. Because of this the entire wheat head is considered an adequate sample unit for density estimates of the two life stages. Sample sizes required to estimate egg and larval populations with given levels of precision were determined. A sequential sampling plan for larval populations was derived using Green’s and Iwao’s methods. Both methods gave similar results; however, the number of samples required to reach a decision was higher using Green’s method than using Iwao’s.

Résumé

On a étudié la répartition spatiale et statistique des oeufs et des larves de la cécidomyie du blé, Sitodiplosis mosellana (Géhin), dans les cultures de blé du nord-est de la Saskatchewan. Les plus fortes numérations pour chaque stade ont été obtenues dans le tiers supérieur de l’épi et les plus faibles dans le tiers inférieur. On peut conclure que l’épi entier constitue une unité d’échantillonnage convenable pour l’estimation des densités de peuplement des deux stades biologiques. On a déterminé la taille des échantillons requise pour estimer les populations d’oeufs et de larves à certains niveaux donnés de précision. Les auteurs ont dégagé un plan d’échantillonnage séquentiel de populations larvaires des méthodes de Green et d’Iwao. Les deux méthodes ont donné des résultats analogues, mais le nombre d’échantillons requis pour prendre une décision est plus élevé pour la méthode de Green que celle d’Iwao.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Felt, E.P. 1921. A study of gall midges, VII. Bull. N.Y. St. Mus. 231–232: 81240.Google Scholar
Green, R.H. 1970. On fixed precision sequential sampling. Res. Popul. Ecol. 12: 249251.CrossRefGoogle Scholar
Iwao, S. 1968. A new regression method for analyzing the aggregation pattern of animal populations. Res. Popul. Ecol. 10: 120.CrossRefGoogle Scholar
Iwao, S. 1975. A new method of sequential sampling to classify populations relative to a critical density. Res. Popul. Ecol. 16: 281288.CrossRefGoogle Scholar
Katayama, J., Fukui, M., and Sasaki, H.. 1987. Seasonal prevalence and adult occurrence and infestation of the wheat blossom midge, Sitodiplosis mosellana (Géhin) (Dip.: Cecidomyiidae) in Kyoto Prefecture. Jpn. J. Appl. Ent. Zool. 31: 4650.CrossRefGoogle Scholar
Lloyd, M. 1967. Mean crowding. J. Anim. Ecol. 36: 130.CrossRefGoogle Scholar
Morris, R.F. 1955. The development of sampling techniques for forest insect defoliators, with particular reference to the spruce budworm. Can. J. Zool. 33: 225294.CrossRefGoogle Scholar
Olfert, O.O., Mukerji, M.K., and Doane, J.F.. 1985. Relationship between infestation levels and yield loss caused by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in spring wheat in Saskatchewan. Can. Ent. 117: 593598.CrossRefGoogle Scholar
Reeher, M.M. 1945. The wheat midge in the Pacific Northwest. Circ. U.S.D.A. 732: 18.Google Scholar
Régnière, J., and Sanders, C.J.. 1983. Optimal sample size for the estimation of spruce budworm (Lepidoptera: Tortricidae) populations on balsam fir and white spruce. Can. Ent. 115: 16211626.CrossRefGoogle Scholar
Shepherd, R.F., Otvos, I.S., and Chomey, R.J.. 1984. Pest management of Douglas-fir tussock moth (Lepidoptera: Lymantridiidae): a sequential sampling method to determine egg mass density. Can. Ent. 116: 10411049.CrossRefGoogle Scholar
Taylor, L.R. 1961. Aggregation, variance and the mean. Nature 189(4766): 732735.CrossRefGoogle Scholar
Turgeon, J.J., and Régnière, J.. 1987. Development of sampling techniques for the spruce budmoth, Zeiraphera canadensis Mut. and Free. (Lepidoptera: Tortricidae). Can. Ent. 119: 239249.CrossRefGoogle Scholar
Walker, G.P., Madden, L.V., and Simonet, D.E.. 1984. Spatial dispersion and sequential sampling of the potato aphid, Macrosiphum euphorbiae (Homoptera: Aphididae) on processing-tomatoes in Ohio. Can. Ent. 116: 10691075.CrossRefGoogle Scholar
Waters, W.E. 1955. Sequential sampling on forest insect surveys. Forest Sci. 1: 6879.Google Scholar