Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-12-01T00:10:25.223Z Has data issue: false hasContentIssue false

DEVELOPMENT AND REPRODUCTION OF THANASIMUS FORMICARIUS (L.) (COLEOPTERA: CLERIDAE) AT THREE CONSTANT TEMPERATURES

Published online by Cambridge University Press:  31 May 2012

Ye Hui
Affiliation:
Institute of Ecology and Geobotany, Yunnan University, Kunming, P.R. China
Alf Bakke
Affiliation:
Norwegian Forest Research Institute, N-1432, AS-NLH, Norway

Abstract

Thanasimus formicarius (L.), a main predator of bark beetles in Eurasia, was studied at constant temperatures of 15, 21, and 25 °C. Morphological data and duration of development are indicated for the egg (2.4 by 0.8 mm; 28–7 days at temperatures from 15 to 25 °C), three larval instars (9–14 days depending on instar and temperatures of 21 and 25 °C), pupa (15 and 33.5 days over the range of temperatures), and adult. Information is also given on head capsule size, sex ratio, fecundity, and length of adult life.

Résumé

Le développement de Thanasimus formicarius (L.) un prédateur important des scolytes en Eurasie, a été étudié à température constante, à 15, 21, et 25 °C. Des données sur la morphologie et la durée du développement sont présentées pour les oeufs (taille, 2,4 × 0,8 mm; durée du développement, 28–7 jours aux températures de 15 à 25 °C), pour les trois stades larvaires (9–14 jours selon le stade, aux températures de 21 et 25 °C), pour les nymphes (15 à 33,5 jours aux trois températures expérimentales) et pour les adultes. On trouvera également des indications sur la taille de la capsule céphalique, le rapport mâles : femelles, la fécondité et la longévité des adultes.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D. 1970. Prey consumption and variations in larval biology of Enoclerus sphegeus (Coleoptera: Cleridae). The Canadian Entomologist 102: 13741379.CrossRefGoogle Scholar
Bakke, A., and Kvamme, T.. 1981. Kairomone response in Thanasimus predators to pheromone components of Ips typographus. Journal of Chemical Ecology 7: 305312.CrossRefGoogle Scholar
Cowan, B.D., and Nagel, W.P.. 1965. Predators of the Douglas-fir Beetle in Western Oregon. Agricultural Experimental Station, Oregon State University, Corvallis, Technical Bulletin 86: 32 pp.Google Scholar
Craighead, F.C. 1950. Insect Enemies of Eastern Forests. U.S. Department of Agriculture, Miscellaneous Publication 657: 679 pp.Google Scholar
Gauss, R. 1954. Der Ameisenbuntkafer Thanasimus formicarius Latr. als Borkenkaferfeind. pp. 417–429 in Wellenstein, G. (Ed.), Die grosse Borkenkaferkalamitat in Sudwest-Deutschland 1944–1951. Ringingen. 496 pp.Google Scholar
Haack, R.A., and Kucera, D.R.. 1993. New Introduction — Common Pine Shoot Beetle, Tomicus piniperda (L.). USDA Forest Service, Northeastern Area, Pest Alert NA–TP–05–93: 2 pp.Google Scholar
Hopkins, A.D. 1899. Report on investigations to determine the cause of unhealthy conditions of the spruce and pine from 1880–1883. West Virginia Agriculture Experimental Station Bulletin 56: 197461.Google Scholar
Lawson, S.A., and Morgan, F.D.. 1992. Rearing of two predators, Thanasimus dubius and Temnochila virescens, for the biological control of Ips grandicollis in Australia. Entomologia Experimentalis et Applicata 65: 225233.CrossRefGoogle Scholar
Mignot, E.C., and Anderson, R.F.. 1969. Bionomics of the bark beetle predator, Thanasimus dubius Fab. (Coleoptera: Cleridea). Entomological News 80: 305310.Google Scholar
Mills, N.J. 1985. Some observation on the role of predation in the natural regulation of Ips typographus populations. Zeitschrift fur Angewandte Entomologie 99: 209215.CrossRefGoogle Scholar
Moeck, H.A., and Safranyik, L.. 1984. Assessment of Predator and Parasitoid Control of Bark Beetles. Pacific Research Centre, Canadian Forestry Service Information Report BC–X–248: 24 pp.Google Scholar
Nebeker, T.E., and Purser, G.C.. 1980. Relationship of temperature and prey type to developmental time of the bark beetle predator Thanasimus dubius (Coleoptera: Cleridae). The Canadian Entomologist 112: 179184.CrossRefGoogle Scholar
Struble, G.R., and Carpelan, L.H.. 1941. External sex characters of two important native predators of the mountain pine in sugar pine (Coleoptera, Ostomatidae, Cleridae). Pan-Pacific Entomologist 17: 153156.Google Scholar
Tommeras, B.A. 1988. The clerid beetle, Thanasimus formicarius, is attracted to the pheromone of the ambrosia beetle, Trypodendron lineatum. Experientia 44: 536537.CrossRefGoogle Scholar
Weslien, J. 1994. Interaction within and between species at different densities of bark beetle Ips typographus and its predator Thanasimus formicarius. Entomologia Experimentalis et Applicata 71: 133143.CrossRefGoogle Scholar
Weslien, J.B., and Regnander, J.. 1992. The influence of natural enemies on brood production in Ips typographus (Col., Scolytidae) with special reference to egg-laying and predation by Thanasimus formicarius (Col., Cleridae). Entomophaga 37: 333342.CrossRefGoogle Scholar
Zondag, R. 1979. Breeding of the clerid Thanasimus formicarius for the control of the bark beetles Hylasts ater and Hylurgops lingiperda in New Zealand. New Zealand Journal of Forestry Science 9: 125132.Google Scholar