Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T11:06:27.082Z Has data issue: false hasContentIssue false

COSTS OF ENERGY SHORTFALL FOR BUMBLE BEE COLONIES: PREDATION, SOCIAL PARASITISM, AND BROOD DEVELOPMENT

Published online by Cambridge University Press:  31 May 2012

Ralph V. Cartar
Affiliation:
Behavioural Ecology Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Lawrence M. Dill
Affiliation:
Behavioural Ecology Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Abstract

Bumble bees rely on stored nectar to maintain high colony temperatures. This study examines some of the costs associated with exhausting stored nectar for a day in confined colonies of Bombus occidentalis Greene and B. melanopygus Nylander. Workers from energy-deprived colonies ceased incubating and allowed brood temperatures to drop to ambient levels. Workers from energy-rich colonies responded to a simulated vertebrate predator by actively moving about and buzzing loudly (apparently searching for the source of disturbance), but those from energy-depleted colonies mostly remained stationary on the comb. Workers from energy-rich colonies responded to an intruding social parasite (a Psithyrus insularis Smith queen) by chasing and attacking it, whereas those from energy-depleted colonies adopted stationary threat postures. In both cases, the more successful defensive strategy of simultaneous attack by several workers was not employed by nectar-depleted colonies. Cooling of final-instar larvae and pupae added to their development times (disproportionately so in the case of pupae), but low temperature per se did not affect their probability of survival. Hence, the costs of short-term energy shortfall include increased susceptibility to predators and parasites and a lengthened period of development. These costs probably relate to energy stores in a nonlinear manner, providing the foundation upon which risk-sensitive foraging decisions can be based.

Résumé

Les abeilles dépendent de réserves de nectar afin de maintenir de hautes températures pour leur colonies. Cette étude examine certains prix associés à la pénurie de réserves quotidiennes de nectar encourus par des colonies confinées de Bombus occidentalis Greene et de B. melanopygus Nylander. Les ouvrières des colonies dont les sources d’énergie sont limitées cessent d’incuber et laissent baisser au niveau ambient la température des couvains. Les ouvrières des colonies riches en énergie répondent à une simulation d’attaque de la part d’un prédateur vertébré en se déplaçant activement et en bourdonnant fortement (cherchant apparemment la source de perturbation), tandis que celles des colonies à budget énergétique limité demeurent en majeure partie stationnaires sur les rayons. Les ouvrières des colonies à budget énergétique non limité répondent à l’intrusion d’un parasite social (une reine Psithyrus insularis Smith) en chassant ce dernier et en l’attaquant, tandis que celles des colonies à budget réduit adoptent des postures de menace stationnaires. Aux deux cas, la stratégie de défense la plus fructueuse, l’attaque en groupe, n’est pas employée par les colonies déprivées de nectar. Le refroidissement des larves en stade larvaire terminal et des pupes prolonge la durée de leur développement (d’une façon disproportionnée au cas des pupes) mais n’affecte pas la probabilité de survie. Ainsi, les prix à courte échéance du manque d’énergie incluent une plus grande susceptibilité aux prédateurs et aux parasites et une période de développement prolongée. Ces prix sont probablement reliés aux réserves énergétiques de façon non linéaire, ce qui fournit la base de toute décision alimentaire sensible à la variance.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, D.V. 1975. Bumblebees. Davis-Poynter, London. 352 pp.Google Scholar
Barrow, D.A., and Pickard, R.S.. 1985. Larval temperature in brood clumps of Bombus pascuorum (Scop.). J. Apicul. Res. 24: 6975.CrossRefGoogle Scholar
Cartar, R.V. 1991 a. Colony energy requirements affect response to predation risk in foraging bumble bees. Ethology. In press.Google Scholar
Cartar, R.V. 1991 b. A test of risk-sensitive foraging in wild bumble bees. Ecology. In press.Google Scholar
Cartar, R.V., and Dill, L.M.. 1990 a. Why are bumble bees risk-sensitive foragers? Behav. Ecol. Sociobiol. 26: 121127.CrossRefGoogle Scholar
Cartar, R.V., and Dill, L.M.. 1990 b. Colony energy requirements affect the foraging currency of bumble bees. Behav. Ecol. Sociobiol. In press.Google Scholar
Free, J.B. 1955. The division of labour within bumblebee colonies. Insectes Soc. 2: 195212.CrossRefGoogle Scholar
Free, J.B., and Butler, C.G.. 1959. Bumblebees. Collins, London. 208 pp.Google Scholar
Hasselrot, T.B. 1960. Studies on Swedish bumblebees. Opusc. Ent., Suppl. 17. Lund.Google Scholar
Heinrich, B. 1972. Patterns of endothermy in bumblebee queens, drones and workers. J. comp. Physiol. 77: 6579.CrossRefGoogle Scholar
Heinrich, B. 1974. Thermoregulation in bumblebees. I. Brood incubation by Bombus vosnesenkii queens. J. comp. Physiol. 88: 129140.CrossRefGoogle Scholar
Heinrich, B. 1979. Bumblebee Economics. Harvard Univ. Press, Cambridge, MA. 245 pp.Google Scholar
McNamara, J.M., and Houston, A.I.. 1986. The common currency for behavioral decisions. Am. Nat. 127: 358378.CrossRefGoogle Scholar
Morse, D.H. 1982. Behavior and ecology of bumble bees. pp. 245–322 in Hermann, H.R. (Ed.), Social Insects, Vol. 3. Academic Press, New York, NY. 459 pp.Google Scholar
Oster, G.F., and Wilson, E.O.. 1978. Caste and Ecology in the Social Insects. Princeton Univ. Press, Princeton, NJ. 352 pp.Google ScholarPubMed
Plath, O.E. 1934. Bumblebees and Their Ways. MacMillan, New York, NY. 201 pp.Google Scholar
Plowright, R.C. 1977. Nest architecture and the biosystematics of bumble bees. Proc. Eighth Int. Cong. Int. Union Stud. Soc. Insects (Wageningen): 183185.Google Scholar
Plowright, R.C., and Fuller, G.A.. 1988. The role of intruder behavior in nestmate recognition by bumble bees (Hymenoptera: Apidae). Can. J. Zool. 66: 28472851.CrossRefGoogle Scholar
Plowright, R.C., and Pendrel, B.A.. 1977. Larval growth in bumble bees (Hymenoptera: Apidae). Can. Ent. 109: 967973.CrossRefGoogle Scholar
Real, L.A., and Caraco, T.. 1986. Risk and foraging in stochastic environments: Theory and evidence. A. Rev. Ecol. Syst. 17: 371390.CrossRefGoogle Scholar
Richards, K.W. 1973. Biology of Bombus polaris Curtis and B. hyperboreus Schonherr at Lake Hazen, Northwest Territories (Hymenoptera: Bombini). Quaest. ent. 9: 115157.Google Scholar
Seeley, T. 1985. Honeybee Ecology. Princeton Univ. Press, Princeton, NJ. 201 pp.CrossRefGoogle Scholar
Seeley, T., and Heinrich, B.. 1981. Regulation of temperature in the nests of social insects. pp. 159–234 in Heinrich, B. (Ed.), Insect Thermoregulation. Wiley, New York, NY. 328 pp.Google Scholar
Siegel, S. 1956. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, New York, NY. 312 pp.Google Scholar
Sladen, F.W.L. 1912. The Humble Bee. MacMillan, London. 283 pp.Google Scholar
Vogt, F.D. 1986 a. Thermoregulation in bumblebee colonies. I. Thermoregulatory versus brood-maintenance behaviors during acute changes in ambient temperature. Physiol. Zool. 59: 5559.CrossRefGoogle Scholar
Vogt, F.D. 1986 b. Thermoregulation in bumblebee colonies. II. Behavioral and demographic variation throughout the colony cycle. Physiol. Zool. 59: 6068.CrossRefGoogle Scholar
Wojtowski, F. 1963. Studies on heat and water economy in bumble-bee nests (Bombinae). Zool. Pol. 13: 1936.Google Scholar