Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T03:25:50.872Z Has data issue: false hasContentIssue false

Consequences of gall tissues as a food resource for a tortricid moth attacking cecidomyiid galls

Published online by Cambridge University Press:  02 April 2012

Shinji Sugiura*
Affiliation:
Laboratory of Forest Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
Kazuo Yamazaki
Affiliation:
Osaka City Institute of Public Health and Environmental Sciences, 8–34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
Takashi Osono
Affiliation:
Laboratory of Forest Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
*
1 Corresponding author (e-mail: [email protected]).

Abstract

Seven species of parasitoids and two species of moths emerged from bud galls induced by two species of gall midges (Asteralobiasoyogo (Kikuti) and A. sasakii (Monzen)) (Diptera: Cecidomyiidae) on four species of trees of the genus Ilex (I. pedunculosa Miq., I. crenata Thunb., I. chinensis Sims, and I. integra Thunb.) (Aquifoliaceae). Larvae of the moth Rhopobota ustomaculana (Curtis) (Lepidoptera: Tortricidae) bored into bud galls induced by A. soyogo and A. sasakii on I. pedunculosa and I. crenata, respectively. Rhopobota ustomaculana larvae fed on leaves as well as gall tissues of I. pedunculosa, suggesting that R. ustomaculana is a facultative cecidophage. To clarify consequences of gall tissues as a food resource for cecidophagous moths, we compared the chemical properties of galls with those of normal plant tissues (leaves) of I. pedunculosa. Bud galls of I. pedunculosa had higher water content and lower nitrogen, carbon, and polyphenol (a chemical associated with plant insect defenses) contents than leaves. Therefore, bud galls may be a richer food resource for R. ustomaculana larvae because of the higher water content and lower carbon and polyphenol contents, although they are a poorer resource in terms of nitrogen content.

Résumé

Sept espèces de parasitoïdes et deux espèces de papillons de nuit émergent des galles provoquées par deux espèces de cécidomyies (Asteralobia soyogo (Kikuti) et A. sasakii (Monzen) (Diptera : Cecidomyiidae)) sur les bourgeons de quatre espèces arborescences du genre Ilex (I. pedunculosa Miq., I. crenata Thunb., I. chinensis Sims et I. integtra Thunb. (Aquifoliaceae)). Les larves du papillon de nuit Rhopobota ustomaculana (Curtis) (Lepidoptera : Tortricidae) percent les galles des bourgeons provoquées chez I. pedunculosa et I. crenata respectivement par A. soyogo et A. sasakii. Les larves de R. ustomaculana se nourrissent de feuilles aussi bien que de tissus de galles chez I. pedunculosa, ce qui laisse croire que R. ustomaculana est un cécidophage facultatif. Afin de déterminer les conséquences de l'utilisation de tissus de galles comme ressource alimentaire chez les papillons de nuit cécidophages, nous avons analysé les propriétés chimiques des galles par comparaison à des tissus normaux (feuilles) chez I. pedunculosa. Les galles des bourgeons d'I. pedunculosa ont un contenu hydrique plus élevé que les feuilles et des contenus en azote, en carbone et en polyphénol (une substance associée à la défense des plantes contre les insectes) plus faibles. Les galles des bourgeons peuvent donc constituer une ressource alimentaire enrichie pour les larves de R. ustomaculana à cause de leur contenu en eau plus élevé et de leurs teneurs plus faibles en carbone et en polyphénol, mais elles sont une ressource moins intéressante à cause de leur faible contenu en azote.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, Y. 1995. Relationships between the gall wasp, Trichagalma serratae (Ashmead) (Hymenoptera: Cynipidae), and two moth species, Andrioplecta pulverula (Meyrick) (Lepidoptera: Tortricidae) and Characoma ruficirra (Hampson) (Lepidoptera: Noctuidae). Applied Entomology and Zoology, 30: 8389.Google Scholar
Abe, Y. 1997. Well-developed gall tissues protecting the gall wasp, Andricus mukaigawae (Mukaigawa) (Hymenoptera: Cynipidae), against the gall inhabiting moth, Oedematopoda sp. (Lepidoptera: Stathmopodidae). Applied Entomology and Zoology, 32: 135141.CrossRefGoogle Scholar
Clancy, K.M. 1993. Adaptations of galling sawflies to natural enemies. In Sawfly life history adaptations to woody plants. Edited by Wagner, M.R. and Raffa, K.F.. Academic Press, London. pp. 295330.Google Scholar
Fukui, A., Murakami, M., Konno, K., and Nakamura, M. 2001. A leaf-rolling caterpillar improves leaf quality. Entomological Science, 5: 263266.Google Scholar
Hartley, S.E. 1998. The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia, 113: 492501.Google Scholar
Hawkins, B.A., and Goeden, R.D. 1984. Organization of a parasitoid community associated with a complex of galls on Atriplex spp. in southern California. Ecological Entomology, 9: 271292.CrossRefGoogle Scholar
Itô, Y., and Hattori, I. 1982. A kleptoparasitic moth, Nola innocua, attacking aphid galls. Ecological Entomology, 7: 475478.Google Scholar
Jones, C.G., Lawton, J.H., and Shachak, M. 1994. Organisms as ecosystem engineers. Oikos, 69: 373386.Google Scholar
Kopelke, J.P. 2003. Natural enemies of gall-forming sawflies on willows (Salix spp) (Hymenoptera: Tenthredinidae: Euura, Phyllocolpa, Pontania). Entomologia Generalis, 26: 277312.CrossRefGoogle Scholar
Mani, M.S. 1964. Ecology of plant galls. Dr. W. Junk, The Hague.Google Scholar
Miyatake, T., Kuba, H., and Yukawa, J. 2000. Seasonal occurrence of Bactrocera scutellata (Diptera: Tephritidae), a cecidophage of stem galls produced by Lasioptera sp. (Diptera: Cecidomyiidae) on wild gourds (Cucurbitaceae). Annals of the Entomological Society of America, 93: 12741279.Google Scholar
Ngakan, P.O., and Yukawa, J. 1996. Gall site preference and intraspecific competition of Neothoracaphis yanonis (Homoptera: Aphididae). Applied Entomology and Zoology, 31: 299310.Google Scholar
Price, P.W., Fernandes, G.W., and Waring, G.L. 1987. Adaptive nature of insect galls Environmental Entomology, 16: 1524.Google Scholar
Sagers, C.L. 1992. Manipulation of host plant quality: herbivores keep leaves in the dark. Functional Ecology, 6: 741743.Google Scholar
Sanver, D., and Hawkins, B.D. 2000. Galls as habitats: the inquiline communities of insect galls. Basic and Applied Ecology, 1: 311.Google Scholar
Schultz, B.B. 1992. Insect herbivores as potential causes of mortality and adaptation in gall-forming insects. Oecologia, 90: 297299.Google Scholar
Stone, G.N., and Schönrogge, K. 2003. The adaptive significance of insect gall morphology. Trends in Ecology and Evolution, 18: 512522.Google Scholar
Sugiura, S., and Yamazaki, K. 2004. Moths boring into Ficus syconia on Iriomote Island, southwestern Japan. Entomological Science, 7: 111116.Google Scholar
Sugiura, S., Yamazaki, K., and Ishii, H. 2002. A record of a cecidophage from Lecithoceridae. Transactions of the Lepidopterological Society of Japan, 53: 1214.Google Scholar
Sugiura, S., Yamazaki, K., Fukasawa, Y. 2004. Weevil parasitism of ambrosia galls. Annals of the Entomological Society of America, 97: 184193.Google Scholar
Tabuchi, K., and Amano, H. 2003 a. Polymodal emergence pattern and parasitoid composition of Asteralobia sasakii (Monzen) (Diptera: Cecidomyiidae) on Ilex crenata and I. integra (Aquifoliaceae). Applied Entomology and Zoology, 38: 493500.Google Scholar
Tabuchi, K., and Amano, H. 2003 b. Host-associated differences in emergence pattern, reproductive behavior and life history of Asteralobia sasakii (Monzen) (Diptera: Cecidomyiidae) between populations on Ilex crenata and I. integra (Aquifoliaceae). Applied Entomology and Zoology, 38: 501508.Google Scholar
Tokuda, M., Uechi, N., and Yukawa, J. 2002. Distribution of Asteralobia gall midges (Diptera: Cecidomyiidae) causing axillary bud galls on Ilex species (Aquifoliaceae) in Japan. Esakia, 42: 1931.Google Scholar
Tokuda, M., Tabuchi, K., Yukawa, J., and Amano, H. 2004. Inter- and intraspecific comparisons between Asteralobia gall midges (Diptera: Cecidomyiidae) causing axillary bud galls on Ilex species (Aquifoliaceae): species identification, host range, and the mode of speciation. Annals of the Entomological Society of America, 97: 957970.CrossRefGoogle Scholar
Waterman, P., and Mole, S. 1994. Analysis of phenolic plant metabolites. Blackwell Scientific, London.Google Scholar
Yamazaki, K., and Sugiura, S. 2002. Two geometrid species attacking gall-mite galls. Transactions of the Lepidopterological Society of Japan, 53: 150152.Google Scholar
Yamazaki, K., and Sugiura, S. 2003 a. Gall-feeding habits in Lepidoptera of Japan. I. Three different types of galls. Transactions of the Lepidopterological Society of Japan, 54: 3139.Google Scholar
Yamazaki, K., and Sugiura, S. 2003 b. Gall-feeding habits in Lepidoptera of Japan. II. A cecidophagous stathmopodid moth attacking the gall of a tortricid moth on the Japanese mugwort. Transactions of the Lepidopterological Society of Japan, 54: 143146.Google Scholar
Yukawa, J., and Masuda, H. 1996. Insect and mite galls of Japan in colors. Zenkoku-nöson-kyôiku-kyôkai, Tokyo.Google Scholar