Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T05:23:23.820Z Has data issue: false hasContentIssue false

Collective foraging patterns of field colonies of Malacosoma disstria caterpillars

Published online by Cambridge University Press:  02 April 2012

Melanie McClure
Affiliation:
Biology Department, Concordia University, 7141 Sherbrooke Street, Montreal, Quebec, Canada H4B 1R6
Emma Despland*
Affiliation:
Biology Department, Concordia University, 7141 Sherbrooke Street, Montreal, Quebec, Canada H4B 1R6
*
1 Corresponding author (e-mail: [email protected]).

Abstract

We monitored 12 colonies of the nomadic social caterpillar Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae) on trembling aspen, Populus tremuloides Michx. (Salicaceae), under field conditions in spring 2007. We examined cohesion and synchronization of colonies and spatiotemporal activity patterns to compare foraging in the field with the results of laboratory studies and with foraging by central-place foragers. All colonies were highly cohesive; fragmentation was observed only three times. Activity was highly synchronous within colonies, with clear alternation between periods of activity and quiescence. Colonies performed 4.25 ± 0.12 (mean ± SE) activity bouts per day, and foraging was more likely to occur in the early morning than at midday. Colony activity was weakly correlated with temperature. In contrast to that of M. americanum (F.), the foraging schedule was flexible: foraging was observed at all recorded times and temperatures. Colonies searched for a new feeding site every 2.54 ± 0.37 days (mean ± SE) after a food source was depleted. Time spent at a food source decreased with colony size, and distance travelled between food sources increased with instar. Malacosoma disstria caterpillars on trembling aspen are not very selective; rather, they minimize movement, thus decreasing potential contacts with predators.

Résumé

Nous avons observé 12 colonies de la livrée des forêts Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae) sur des peupliers faux-trembles, Populus tremuloides Michx. (Salicaceae), sur le terrain au printemps 2007. Nous avons examiné la cohésion et la synchronisation des colonies, ainsi que les patrons temporaux et spatiaux de leurs activités, afin de comparer le comportement sur le terrain avec celui en laboratoire et avec celui des espèces à tentes. Toutes les colonies ont démontré une cohésion très élevée et la fragmentation n'a été observée que trois fois. L'activité des colonies était très synchronisée, alternant entre des périodes d'activité et de repos. Les colonies avaient 4.25 ± 0.12 (moyenne ± SE) périodes d'activité par jour. Les colonies étaient plus souvent actives tôt le matin qu'à midi, mais il n'y avait aucun patron régulier d'activités. La proportion des colonies étant actives était faiblement corrélée avec la température. De l'activité a été observée à toutes les heures et les températures, démontrant que la livrée des forêts a un horaire flexible, contrairement à M. americanum (F.). Les colonies de chenilles changeaient de site d'alimentation tout les 2.54 ± 0.37 jours (moyenne ± SE), lorsque celui-ci était épuisé. Le temps passé sur une source alimentaire était négativement corrélé avec la taille du groupe, et la distance parcourue entre deux sources augmentait avec le stade larvaire. Sur le peuplier, M. disstria n'exerce donc pas de sélection alimentaire mais minimise les déplacements entre les sites et les chances de rencontrer un prédateur.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbehenn, R.V., Check, S., Gasperut, A., Lister, E., and Maben, R. 2005. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orygia leucostigma caterpillars. Journal of Chemical Ecology, 31: 969988. PMID: 18284724 doi:10.1007/s10886-005-4242-4.CrossRefGoogle Scholar
Casey, T.M., Joos, B., Fitzgerald, T.D., Yurlina, M.E., and Young, P.A. 1988. Synchronized group foraging, thermoregulation, and growth of eastern tent caterpillars in relation to microclimate. Physiological Zoology, 61: 372377.CrossRefGoogle Scholar
Despland, E., and Le Huu, A. 2007. Pros and cons of group living in the forest tent caterpillar: separating the roles of silk and of grouping. Entomologia Experimentalis et Applicata, 122: 181189. doi:10.1111/j.1570-7458.2006.00512.x.CrossRefGoogle Scholar
Despland, E., and Noseworthy, M.K. 2006. How well do specialist feeders regulate nutrient intake? Evidence from a gregarious tree-feeding caterpillar. Journal of Experimental Biology, 209: 13011309. PMID:16547301 doi:10.1242/jeb.02130.CrossRefGoogle ScholarPubMed
Etilé, E. 2008. Comportement alimentaire de la livrée des forêts (Malacosoma disstria Hübner) sur quatre de ses plantes hôtes. M.Sc. thesis, Université de Québec à Montréal, Montréal, Quebec.Google Scholar
Fitzgerald, T.D. 1980. An analysis of daily foraging patterns of laboratory colonies of the eastern tent caterpillar, Malacosoma americanum (Lepidoptera: Lasiocampidae), recorded photo-electronically. The Canadian Entomologist, 112: 731738. doi: 10.4039/Ent112731-7.CrossRefGoogle Scholar
Fitzgerald, T.D. 1995. The tent caterpillars. Cornell University Press, Ithaca, New York.Google Scholar
Fitzgerald, T.D. 2003. Role of trail pheromone in foraging and processionary behavior of pine processionary caterpillars Thaumetopoea pityocampa. Journal of Chemical Ecology, 29: 513532. PMID: 12757316 doi:10.1023/A:1022875102682.CrossRefGoogle ScholarPubMed
Fitzgerald, T.D., and Costa, J.T. 1986. Trail-based communication and foraging behavior of young colonies of forest tent caterpillars (Lepidoptera: Lasiocampidae). Annals of the Entomological Society of America, 79: 9991007.CrossRefGoogle Scholar
Fitzgerald, T.D., and Peterson, S.C. 1988. Cooperative foraging and communication in caterpillars. BioScience, 38: 2025. doi:10.2307/1310642.CrossRefGoogle Scholar
Fitzgerald, T.D. and Underwood, D.L.A. 2000. Winter foraging patterns and voluntary hypothermia in the social caterpillar Eucheira socialis. Ecological Entomology, 25: 3544. doi:10.1046/j.1365-2311.2000.00236.x.CrossRefGoogle Scholar
Fitzgerald, T.D., Casey, T., and Joos, B. 1988. Daily foraging schedule of field colonies of the eastern tent caterpillar Malacosoma americanum. Oecologia, 76: 574578.CrossRefGoogle ScholarPubMed
Hodson, A.C. 1941. An ecological study of the forest tent caterpillar, Malacosoma disstria Hbn., in northern Minnesota. Technical Bulletin of the Minnesota Agricultural Experiment Station No. 148.Google Scholar
Hosmer, D., and Lemeshow, S. 1989. Applied logistic regression. John Wiley and Sons, New York.Google Scholar
Levesque, K.R., Fortin, M., and Mauffette, Y. 2002. Temperature and food quality effects on growth, consumption and post-ingestive utilization efficiencies of the forest tent caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). Bulletin of Entomological Research, 92: 127136. PMID: 12020370 doi:10.1079/BER2002153.CrossRefGoogle ScholarPubMed
Lorenzetti, F. 1993. Performances relatives de la livrée des forêts Malacosoma disstria Hbn. sur l'érable à sucre Acer saccharum Marsh. sain et dépéri et sur le peuplier faux-tremble Populus tremuloïdes Michx. en relation avec la chimie foliaire. M.Sc. thesis, Université du Québec à Montréal, Montréal, Quebec.Google Scholar
Montllor, C.B., and Bernays, E.A. 1993. Invertebrate predators and caterpillar foraging. In Caterpillars: ecological and evolutionary constraints on foraging. Edited by Stamp, N.E. and Casey, T.M.Chapman & Hall, New York.Google Scholar
Noseworthy, M.K., and Despland, E. 2006. How do primary nutrients affect the performance and preference of forest tent caterpillars on trembling aspen? The Canadian Entomologist, 138: 367375. doi:10.4039/N05-076.CrossRefGoogle Scholar
Panzuto, M., Lorenzetti, F., Mauffette, Y., and Albert, P.J. 2001. Perception of aspen and sun/shade sugar maple leaf soluble extracts by larvae of Malacosoma disstria. Journal of Chemical Ecology, 27: 19631978. PMID:11710605 doi:10.1023/A:1012282618332.CrossRefGoogle Scholar
Peters, M.I., and Despland, E. 2006. Plasticity in forest tent caterpillar self-organized collective foraging. Ethology, 112: 521528. doi:10.1111/j.1439-0310.2005.01197.x.CrossRefGoogle Scholar
Ruf, C., and Fiedler, K. 2002. Plasticity in foraging patterns of larval colonies of the small eggar moth, Eriogaster lanestris (Lepidoptera: Lasiocampidae). Oecologia, 131: 626634. doi:10.1007/s00442-002-0914-8.CrossRefGoogle ScholarPubMed
Shiga, M. 1979. Population dynamics of Malasocoma neustria testacea (Lepidoptera, Lasiocampidae). Bulletin of Fruit Tree Research Station Series A, 6: 59168.Google Scholar
Stamp, N.E., and Bowers, M.D. 1990. Variation in food quality and temperature constrain foraging of gregarious caterpillars. Ecology, 71: 10311039. doi:10.2307/1937371.CrossRefGoogle Scholar
Wellington, W.G., Sullivan, C.R., and Green, G.W. 1951. Polarized light and body temperature level as orientation factors in the light reaction of some hymenopterous and lepidopterous larvae. Canadian Journal of Zoology, 29: 339351. doi:10.1139/z51-030.CrossRefGoogle Scholar