Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T04:34:31.978Z Has data issue: false hasContentIssue false

Characterization of two non-native invasive bark beetles, Scolytus schevyrewi and Scolytus multistriatus (Coleoptera: Curculionidae: Scolytinae)

Published online by Cambridge University Press:  02 April 2012

Patricia L. Johnson*
Affiliation:
United States Department of Agriculture, Forest Service, Wallowa Valley Office, Box A, 88401 Highway 82, Enterprise, Oregon 97828, United States of America
Jane L. Hayes
Affiliation:
United States Department of Agriculture, Forest Service, Pacific Northwest Forestry and Range Sciences Laboratory, 1401 Gekeler Lane, La Grande, Oregon 97850, United States of America
John Rinehart
Affiliation:
Eastern Oregon University, One University Boulevard, La Grande, Oregon 97850, United States of America
Walter S. Sheppard
Affiliation:
Department of Entomology, FSHN Building 166, Washington State University, Pullman, Washington 99164–6382, United States of America
Steven E. Smith
Affiliation:
School of Natural Resources, University of Arizona, 325 Biological Sciences East, 1311 East 4th Street, Tucson, Arizona 85721, United States of America
*
1Corresponding author (e-mail: [email protected]).

Abstract

Scolytus schevyrewi Semenov, the banded elm bark beetle, and S. multistriatus Marsham, the smaller European elm bark beetle, are morphologically similar. Reliance on adult external morphological characters for identification can be problematic because of wide within-species variability and the need for good-quality specimens. The inability to identify developmental stages can also hamper early-detection programs. Using two character identification systems, genitalic (aedeagus) morphology, and DNA markers (random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR)) to distinguish S. schevyrewi from S. multistriatus, we examined specimens from geographically distinct populations of both species collected from infested host trees or semiochemical-baited funnel traps. We found that aedeagus morphology can be used to identify the two species. The use of two oligonucleotide primers in the RAPD-PCR analysis yielded distinct DNA banding patterns for the two species. Species identification using RAPD-PCR analysis was validated by a blind test and used to make species identifications of larval specimens. These tools improve the ability to differentiate between S. schevyrewi and S. multistriatus at immature and adult stages, and could be developed and used for other scolytines as well.

Résumé

Scolytus schevyrewi Semenov, le scolyte asiatique de l’orme, et S. multistriatus Marsham, le petit scolyte européen de l’orme, se ressemblent morphologiquement. L’utilisation des seuls caractères externes des adultes pour l’identification pose un problème, car il y a un fort degré de variabilité au sein de chacune des espèces et il est nécessaire d’obtenir des spécimens de bonne qualité. L’impossibilité d’identifier les stades immatures peut aussi nuire aux programmes de détection hâtive. En utilisant deux systèmes de caractères diagnostiques, la morphologie génitale (édéage) et des marqueurs ADN (ADN polymorphe amplifié aléatoirement en chaîne par polymérase (RAPD-PCR)), pour distinguer S. schevyrewi et S. multistriatus, nous avons examiné des spécimens provenant de populations géographiquement distinctes des deux espèces et récoltés sur des arbres hôtes infestés ou dans des pièges appâtés de produits sémiochimiques. Nous trouvons que la morphologie de l’édéage permet d’identifier les deux espèces. L’utilisation de deux sondes d’oligonucléotides dans l’analyse RAPD-PCR produit des patrons de bandes ADN distincts chez les deux espèces. Nous avons validé l’identification par l’analyse RAPD-PCR dans un test aveugle; nous l’avons aussi appliquée à l’identification spécifique de larves. Ces outils permettent de mieux différencier S. schevyrewi de S. multistriatus aux stades immatures et adulte; il serait possible d’en mettre au point et d’en utiliser de semblables pour d’autres scolytinés.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, E.A., and Humble, L.M. 2002. Nonindigenous species introductions: a threat to Canada's forests and forest economy. Canadian Journal of Plant Pathology, 24: 103110.CrossRefGoogle Scholar
Baker, W.L. 1972. Eastern forest insects. United States Department Agriculture Forest Service Miscellaneous Publication No. 1175.CrossRefGoogle Scholar
Bellows, T.S., Meisenbacher, C., and Reardon, R.C. 1998. European elm bark beetle biological control. In Biological control of arthropod forest pests of the western United States: a review and recommendations. USDA Forest Service, FHTET-96–21, The University of Georgia, and Southern Forest Insect Work Conference. Available from http://www.barkbeetles.org/Biocontol/europeanelmbarkbeetle.html [accessed 15 September 2006].Google Scholar
Cane, J.H., Stock, M.W., Wood, D.L., and Gast, S.J. 1990. Phylogenetic relationships of Ips bark beetles (Coleoptera: Scolytidae): electrophoretic and morphometric analyses of the grandicollis group. Biochemical Systematics and Ecology, 18: 359368.Google Scholar
Carter, C.M., Robertson, J.L., Haack, R.A., Lawrence, R.K., and Hayes, J.L. 1996. Genetic relatedness of North American populations of Tomicus piniperda (Coleoptera: Scolytidae). Journal of Economic Entomology, 89: 13451353.Google Scholar
Carvalho, A.O.R., and Vieira, L.G.E. 2000. Comparison of preservation methods of Atta spp. (Hymenoptera: Formicidae) for RAPD analysis. Anais da Sociedade Entomologica do Brasil, 29: 489496.CrossRefGoogle Scholar
Cerezke, H.F. 1964. The morphology and functions of the reproductive systems of Dendroctonus monticule Hopk. (Coleoptera: Scolytidae). The Canadian Entomologist, 96: 477500.Google Scholar
Chapman, J.W. 1910. The introduction of a European scolytine (the smaller elm bark-beetle, Scolytus multistriatus (Marsh.) into Massachusetts. Psyche (Cambridge), 17: 6368.CrossRefGoogle Scholar
Furniss, R.L., and Carolin, V.M. 1977. Western forest insects. United States Department Agriculture Forest Service Miscellaneous Publication No. 1339.Google Scholar
Garner, K.J., and Slavecek, J.M. 1996. Identification and characterization of a RAPD-PCR marker for distinguishing Asian and North American gypsy moths. Insect Molecular Biology, 5: 8191.Google Scholar
Garnier, S., Magniez-Jannis, F., Rasplus, J.-Y., and Alibert, P. 2005. When morphometry meets genetics: inferring the phylogeography of Carabus solieri using analyses of pronotum and male genitalia. Journal of Evolutionary Biology, 18: 269280. doi: 10.1111/j.1420–9101.2004.00854.x.CrossRefGoogle ScholarPubMed
Haack, R.A. 2006. Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Canadian Journal of Forest Research, 36: 269288.Google Scholar
Haack, R.A., and Cavey, J.F. 2000. Insects intercepted on solid wood packing materials at United States ports-of-entry: 1985–1998. In Quarantine pest risk for the forestry sector and their effects on foreign trade: Proceedings of Silvotecuna 14, 27–28 June 2000, Concepción, Chile [CD-ROM]. La Corporación Chilena de la Madera (CORMA), Concepción, Chile. pp. 116.Google Scholar
Harris, J.L. 2004. Forest insect and disease conditions in the Rocky Mountain Region. USDA Forest Service, Rocky Mountain Region, Renewable Resources, R2–05–09. Available from http://www.fs.fed.us/r2/fhm/reports/r2cond_r2-05-09.pdf [accessed 15 May 2006].Google Scholar
Hidayat, P., Phillips, T.W., and French-Constant, R.H. 1996. Molecular and morphological characters discriminate Sitophilus oryzae and S. zeamais (Coleoptera: Curculionidae) and confirm reproductive isolation. Annals of the Entomological Society of America, 89: 645652.Google Scholar
LaBonte, J.R., Rabaglia, R.J., and Hoebeke, E.R. 2003. A screening aid for the identification of the banded elm bark beetle, Scolytus schevyrewi Semenov. Available from http://ceris.purdue.edu/napis/pests/barkb/schevy/schevyrewiIDnew1A.pdf [accessed 19 October 2003].Google Scholar
Liu, H.-P., and Haack, R.A. 2003. Scolytus schevyrewi: pest report from the exotic forest pest information system for North America. Available from http://spfnic.fs.fed.us/exfor/data/pestreports. cf.m?pestidval = 163&langdisplay = english [accessed 19 July 2004].Google Scholar
Mutanen, M. 2005. Delimitation difficulties in species splits: a morphometrics case study on the Euxoa tritici complex (Lepidoptera, Noctuidae). Systematic Entomology, 30: 632643. doi: 10.1111/j.1365–3113.2005.00296.x.CrossRefGoogle Scholar
Negron, J., Witcosky, J.J., Cain, R.J., LaBonte, J.R., Duerr, D.A. II, McElwey, S.J., Lee, J.C., and Seybold, S.J. 2005. The banded elm bark beetle: a new threat to elms in North America. American Entomologist, 51: 8494.CrossRefGoogle Scholar
Neuman, F.G. 1987. Introduced bark beetles on exotic trees in Australia with special reference to infestations of Ips granicollis in pine plantations. Australia Forestry, 50: 166178.Google Scholar
North American Plant Protection Organization. 2003. Detection of Scolytus schevyrewi Semenov in Colorado and Utah: official pest reports for United States, phytosanitary alert. Available from http://www.ceris.purdue.edu/napis/pests/barkb/schevy/030715-nappo.txt [accessed 9 October 2004].Google Scholar
Peakall, R., and Smouse, P.E. 2005. GenAlEx 6: genetic analysis in Excel — population genetic software for teaching and research [computer program]. Molecular Ecological Notes, 6: 288295.CrossRefGoogle Scholar
Ruiz, E.A. 2005. Estructura genetica poblacional de Dendroctonus pseudotsugae Hopkins (Coleoptera: Curculionidae: Scolytinae): mediante marcadores moleculares. M.Sc. thesis, Instituto Politecnico Nacional, Mexico D.F., Mexico.Google Scholar
SAS Institute Inc. 2002. SAS/STAT® software. Version 9.1. SAS System for Windows®. SAS Institute Inc., Cary, North Carolina.Google Scholar
Schreiber, D.E., Garner, K.J., and Slavicek, J.M. 1997. Identification of three randomly amplified polymorphic DNA–polymerase chain reaction markers for distinguishing Asian and North American gypsy moths (Lepidoptera: Lymantriidae). Annals of the Entomological Society of America, 90: 667674.Google Scholar
Seybold, S., and Lee, J. 2004. The banded elm bark beetle: update on an invasive pest of elms. USDA Forest Service, Pacific Southwest Research Station, Davis, California. Available from http://www.caforestpestcouncil.org/2004%20CFPC%20Meeting/1010%20SeyboldCAPest3-Scolytus.pdf [accessed 15 May 2006].Google Scholar
Sharp, D., and Muir, F. 1912. The comparative anatomy of the male genital tube in Coleoptera. Transactions of the Entomological Society of London. Part III. pp. 477642.Google Scholar
Solomon, J.D. 1995. Guide to insect borers in North American broadleaf trees and shrubs. Agriculture Handbook No. 706, USDA Forest Service, Washington, D.C. pp. 509514.Google Scholar
Soto, I. 2005. Use of elliptic Fourier descriptors for quantification of male genitalia morphology of cactophilic Drosophila. Drosophila Information Service, 88: 4245.Google Scholar
Stauffer, C., and Zuber, M. 1998. Ips amitinus var. montana (Coleoptera, Scolytidae) is synonymous to Ips amitinus: a morphological, behavioral and genetic re-examintion. Biochemical Systematics and Ecology, 26: 171183.Google Scholar
Torre-Bueno, J.R. de la. 1962. A glossary of entomology, with Supplement A by G.S. Tulloch. Brooklyn Entomological Society, Brooklyn, New York.Google Scholar
Vite, J.P., Islas, S., Renwick, J.A.A., Hughes, P.R., and Kliefoth, R.A. 1974. Biochemical and biological variation of southern pine beetle populations in North and Central America. Zeitscrift für Angewandte Entomologie, 75: 422435.Google Scholar
Wang, Z. 1992. Scolytus schevyrewi Semenov. In Forest insects of China. 2nd ed. Edited by Xiao, G.. China Forestry Publication House, Beijing, People's Republic of China. pp. 633634.Google Scholar
Weber, J.W. 1990. Relative effectiveness of Scolytus scolytus, S. multistriatus and S. kirschi as vectors of Dutch elm disease. European Journal of Forest Pathology, 20: 184192.Google Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs No. 6.Google Scholar