Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T05:31:22.978Z Has data issue: false hasContentIssue false

CATHEPSIN B AND AMINOPEPTIDASE ACTIVITY IN THE POSTERIOR MIDGUT OF EUSCHISTUS EUSCHISTOIDES (HEMIPTERA: PENTATOMIDAE)

Published online by Cambridge University Press:  31 May 2012

Jon G. Houseman
Affiliation:
Department of Biology, Queen's University, Kingston, Ontario K7L 3N6
W. K. MacNaughton
Affiliation:
Department of Biology, Queen's University, Kingston, Ontario K7L 3N6
A. E. R. Downe
Affiliation:
Department of Biology, Queen's University, Kingston, Ontario K7L 3N6

Abstract

The posterior midgut of a seed-feeding pentatomid, Euschistus euschistoides (Vollenhoven), contains the proteinases cathepsin B and aminopeptidase. Cadiepsin B hydrolysis of benzoyl-DL-arginine-2-naphthylamide is activated by thiol chemicals and EDTA. Aminopeptidase hydrolysis of leucine-p-nitroanilide is activated by MgCl2 and inhibited by cysteine, glutathione, EDTA, and CaCl2. These results are similar to those obtained for cathepsin B and aminopeptidase from blood-feeding Hemiptera and support the hypothesis that catheptic proteinases are unique to this order.

Résumé

Le mésentéron postérieur du pentatomide granivore Euschistus euschistoides (Vollenhoven) contient les proteinases cathepsine B et l'aminopeptidase. L'hydrolyse du ben-zoyl-DL-arginine-2-naphthylamide par la cathepsine B est activée par les produits de type thiol et par l'EDTA. L'hydrolyse de la leucine-p-nitroanilide par l'aminopeptidase est activée par le MgCl2 et inhibée par la cysteine, le glutathione, l'EDTA et le CaCl2. Ces résultats sont semblables à ceux obtenus avec la cathepsine B et l'aminopeptidase provenant d'hémiptères hématophages, appuyant l'hypothèse voulant que les proteinases catheptiques sont uniques à cet ordre.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, A. J. 1976. An improved colour reagent of use in Barrett's assay of cathepsin B. Analyt. Biochem. 76: 374376.Google Scholar
Barrett, A. J. 1977. Cathepsin B and other thiol proteinases. pp. 181–208 in Barrett, A. J. (Ed), Proteinases in Mammalian Cells and Tissues. Elsevier/North Holland, Amsterdam.Google Scholar
Bramhall, S. et al. 1969. A simple colorimetric method for the determination of protein. Analyt. Biochem. 31: 146148.Google Scholar
Dadd, R. H. 1970. Digestion in insects. Chem. Zool. 5: 117145.Google Scholar
Erlanger, B. F., Kokowsky, N., and Cohen, W.. 1961. The preparation and properties of two chromogenic substrates for trypsin. Arch. Biochem. Biophys. 95: 271278.CrossRefGoogle ScholarPubMed
Geering-Sacher, K. 1972. Studies on digestive proteinase activity in the midgut of Dysdercus fasciatus. J. Insect Physiol. 18: 20712076.Google Scholar
Gilmour, D. 1961. The Biochemistry of Insects. Academic Press, NY.Google Scholar
Houseman, J. G. 1978. A thiol-activated digestive proteinase from adults of Rhodnius prolixus. Can. J. Zool. 56: 11401143.Google Scholar
Houseman, J. G. and Downe, A. E. R.. 1980. Endoproteinase activity in the posterior midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae). Insect Biochem. 10: 363366.Google Scholar
Houseman, J. G. and Downe, A. E. R.. 1981 a. Identification and partial characterization of digestive proteinases from Triatoma phyllosoma pallidipennis Stål (Hemiptera: Reduviidae). Comp. Biochem. Physiol. 70B: 713717.Google Scholar
Houseman, J. G. and Downe, A. E. R.. 1981 b. Exoproteinase activity in the posterior midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae). Insect Biochem. 11: 579582.Google Scholar
Houseman, J. G. and Downe, A. E. R.. 1982 a. Identification and partial characterization of digestive proteinases from two species of bedbug (Hemiptera: Cimicidae). Can. J. Zool. 60: 18371840.CrossRefGoogle Scholar
Houseman, J. G. and Downe, A. E. R.. 1982 b. Characterization of an acidic proteinase from the posterior midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae). Insect Biochem. 12: 651655.CrossRefGoogle Scholar
Houseman, J. G. and Downe, A. E. R.. 1983. Cathepsin D-like activity in the posterior midgut of hemipteran insects. Comp. Biochem. Physiol. 75B: 509512.Google Scholar
Khan, M. A. 1964. Proteolytic activity in the digestive tract of the water scorpion Laccotrephis maculatus Fabr. (Nepidae: Hemiptera). Entomologia exp. appl. 7: 335338.CrossRefGoogle Scholar
Law, J. H., Dunn, P. E., and Kramer, K. J.. 1977. Insect proteinases and peptidases. Advanc. Enzymol. 45: 389425.Google ScholarPubMed
Muraleedharan, D. and Prabhu, V. K. K.. 1979. Role of the median neurosecretory cells in the secretion of protease and invertase in the red cotton bug Dysdercus cingulatus. J. Insect Physiol. 25: 237240.Google Scholar