Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T06:21:43.808Z Has data issue: false hasContentIssue false

BORNEOL AS AN ATTRACTANT FOR CYZENIS ALBICANS, A TACHINID PARASITOID OF THE WINTER MOTH, OPEROPHTERA BRUMATA L. (LEPIDOPTERA: GEOMETRIDAE)

Published online by Cambridge University Press:  31 May 2012

Jens Roland
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
Keith E. Denford
Affiliation:
Faculty of Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
Luis Jimenez
Affiliation:
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Abstract

Volatile compounds were isolated and identified from a crude extract of garry oak, Quercus garryana, foliage which was known to be attractive to the tachinid fly Cyzenis albicans. Candidate compounds were identified by the combined use of gas chromatography–mass spectrometry, and infra-red spectroscopy. Specific oak-leaf volatiles were field-tested in 2 different years in an apple orchard. Compounds were applied singly or in combination to individual apple trees; the number of C. albicans entering the canopy of each tree was observed and the number of eggs they oviposited on foliage was estimated. Borneol was the only compound that attracted flies when compared with the other treatments, but this did not result in more fly eggs being oviposited on borneol-treated trees. None of the compounds tested resulted in a greater number of Cyzenis eggs being oviposited. A greater abundance of borneol in oak foliage than in apple foliage, and its attractiveness to C. albicans, may explain the aggregation of flies in response to feeding-damage among oak trees and the absence of this pattern among apple trees.

Résumé

Les substances volatiles ont été isolées et identifiées dans un extrait brut du Chêne de Garry, Quercus garryana, dont le feuillage attire la mouche tachinide Cyzenis albicans. Les substances présumées attirantes ont été identifiées par la combinaison de deux méthodes, chromatographie en phase gazeuse–spectrométrie de masse, et par spectroscopie infra-rouge. Les substances volatiles spécifiques aux feuilles du chêne ont servi au cours de tests en nature dans un verger de pommiers pendant 2 années. Les substances ont été vaporisées une à une ou en combinaisons à des pommiers choisis; le nombre de C. albicans qui ont envahi le feuillage de chacun des arbres a été enregistré et le nombre d’oeufs qu’ils ont pondus sur le feuillage a été estimé. Parmi les substances testées, seul le bornéol s’est avéré posséder des propriétés attirantes, mais il n’y avait pas plus d’oeufs pondus sur les pommiers traités au bornéol que sur les autres pommiers. Aucune des substances n’a provoqué de pontes plus importantes de Cyzenis sur les pommiers. L’abondance de bornéol plus grande dans le feuillage des chênes que dans le feuillage des pommiers et son pouvoir d’attraction sur C. albicans explique sans doute les infestations de tachinides dans les chênes déjà endommagés par l’alimentation des insectes et l’absence de telles infestations dans les pommiers.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Camors, F.B., and Payne, T.L.. 1972. Response of Heydenia unica (Hymenoptera: Pteromalidae) to Dendroctonus frontalis (Coleoptera: Scolytidae) pheromones and a host-tree terpene. Annals of the Entomological Society of America 65: 3133.CrossRefGoogle Scholar
Elzen, G.W., Williams, H.J., and Vinson, S.B.. 1984. Isolation and identification of cotton synomones mediating searching behavior by parasitoid Campoletis sonorensis. Journal of Chemical Ecology 10: 12511264.CrossRefGoogle Scholar
Embree, D.G., and Sisojevic, P.. 1965. The bionomics and population density of Cyzenis albicans (Fall.) (Tachinidae: Diptera) in Nova Scotia. The Canadian Entomologist 97: 631639.CrossRefGoogle Scholar
Hassell, M.P. 1968. The behavioural response of a tachinid fly (Cyzenis albicans (Fall.)) to its host, the winter moth (Operophtera brumata (L.)). Journal of Animal Ecology 37: 627639.CrossRefGoogle Scholar
Hassell, M.P. 1980. Foraging strategies, population models and biological control: A case study. Journal of Animal Ecology 49: 603628.CrossRefGoogle Scholar
Herrebout, W.M., and van der Veer, J.. 1969. Habitat selection in Eucarcelia rutilla Vill. (Diptera: Tachinidae). Zeitshcrift für angewandte Entomologi 64: 5561.CrossRefGoogle Scholar
Jones, R.L., Lewis, W.J., Bowman, M.C., Beroza, M., and Bierl, B.A.. 1971. Host-seeking stimulant for parasite of corn earworm: Isolation, identification and synthesis. Science 173: 842843.CrossRefGoogle Scholar
Monteith, L.G. 1955. Host preferences of Drino bohemica Mesn. (Diptera: Tachinidae), with particular reference to olfactory responses. The Canadian Entomologist 87: 509530.CrossRefGoogle Scholar
Nettles, W.C. 1980. Adult Eucelatoria sp.: Response to volatiles from cotton and okra plants and from larvae of Heliothis virescens, Spodoptera eridania, and Estigmine acrea. Environmental Entomology 9: 759763.CrossRefGoogle Scholar
Nettles, W.C. 1982. Contact stimulants from Heliothis virescens that influence the behavior of females of the tachinid, Eucelatoria bryani. Journal of Chemical Ecology 8: 11831191.CrossRefGoogle Scholar
Odell, T.M., and Godwin, P.A.. 1984. Host selection by Blepharipa pratensis (Meigen), a tachinid parasite of the gypsy moth Lymantria dispar L. Journal of Chemical Ecology 10: 311320.CrossRefGoogle Scholar
Roland, J. 1986. Parasitism of winter moth in British Columbia during build-up of its parasitoid Cyzenis albicans: Attack rate on oak v apple. Journal of Animal Ecology 55: 215234.CrossRefGoogle Scholar
Roland, J. 1994. After the decline: What maintains low winter moth density after successful biological control? Journal of Animal Ecology 63: 392398.CrossRefGoogle Scholar
Roland, J., and Denford, K.E.. 1991. Identification and use of volatile plant compounds for the enhancement of biological control by Cyzenis albicans (Tachinidae). Redia 74(3) Appendix: 135141.Google Scholar
Roland, J., and Embree, D.G.. 1995. Biological control of the winter moth. Annual Review of Entomology 40: 475492.CrossRefGoogle Scholar
Roland, J., Evans, W.G., and Myers, J.H.. 1989. Manipulation of oviposition patterns of the parasitoid Cyzenis albicans (Tachinidae) in the field using plant extracts. Journal of Insect Behaviour 2: 487503.CrossRefGoogle Scholar
Roth, J.P., King, E.G., and Thompson, A.C.. 1978. Host location behavior by the tachinid, Lixophaga diatraeae, Environmental Entomology 7: 794798.CrossRefGoogle Scholar
Turlings, T.C.J., Tumlinson, J.H., and Lewis, W.J.. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 12511253.CrossRefGoogle ScholarPubMed
Vet, L.E.M., and Dicke, M.. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annual Review of Entomology 37: 141172.CrossRefGoogle Scholar
Whitman, D.W. 1988. Plant natural products as parasitoid cuing agents. pp. 386396in Cutler, H.G. (Ed.), Biologically Active Natural Products: Potential Use in Agriculture. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
Whitman, D.W., and Eller, F.J.. 1990. Parasitic wasps orient to green leaf volatiles. Chemoecology 1: 6975.CrossRefGoogle Scholar