Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T10:21:01.076Z Has data issue: false hasContentIssue false

BIOSYSTEMATICS OF PISSODES GERMAR (COLEOPTERA: CURCULIONIDAE): FEEDING PREFERENCE AND BREEDING SITE SPECIFICITY OF P. STROBI AND P. APPROXIMATUS

Published online by Cambridge University Press:  31 May 2012

Thomas W. Phillips
Affiliation:
Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse 13210
Gerald N. Lanier
Affiliation:
Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse 13210

Abstract

Pissodes strobi (Peck) and P. approximatus Hopkins are sibling species that can produce fertile hybrids in the laboratory, but in nature they are isolated by differences in their breeding habits. In a laboratory assay for feeding preference, these species exhibited similar patterns of acceptance of most conifer hosts in the fall, but differed distinctly in their preferences for certain conifers in the spring. Both species had high levels of feeding on white spruce in the fall and spring tests, hut these data apparently do not reflect host preference in nature. In field tests, P. strobi males and females confined on 1-year-old terminal leaders of eastern white pine (their usual breeding sites) produced abundant progeny, whereas P. approximatus pairs confined on leaders produced few progeny. Mixed species pairs were successful in killing and breeding in white pine leaders when the females were P. strobi, but not when the females were P. approximatus. Laboratory-reared hybrids were unsuccessful when forced to breed in leaders. When confined on red pine bolts (the usual breeding sites of P. approximatus), P. strobi and hybrids produced substantially fewer progeny than did P. approximatus. Breeding site separation provides compelling evidence of reproductive isolation between these sympatric species.

Résumé

Pissodes strobi (Peck) et P. approximatus Hopkins sont des espèces jumelles pouvant produire des hybrides fertiles au laboratoire, mais en nature elles sont isolées par certaines différences dans leur comportemet reproducteur. Lors d'un test de préférence alimentaire au laboratoire, ces espèces ont montré des profils similaires d'acceptabilité pour la plupart des conifères hôtes en automne, mais leurs préférences pour certains conifères étaient très différentes au printemps. Les deux espèces ont montré des niveaux élevés d'alimentation sur l'épinette blanche en automne comme en hiver, mais ces données ne semblent pas conformes à leurs préférences naturelles. Lors de tests de terrain, des mâles et des femelles de P. strobi confinés à des pousses apicales du pin blanc âgées d'un an (sites habituels de reproduction) ont laissé une progéniture nombreuse, alors que des couples de P. approximatus confinés aux pousses apicales ont laissé peu de progéniture. Des couples mixtes ont tué et se sont reproduits sur des pousses apicales si la femelle était de P. strobi, mais non pas si la femelle était de P. approximatus. Des hybrides obtenus en laboratoire n'ont pas pu se reproduire lorsque confinés à des pousses apicales. Lorsque confinés à des billes de pin rouge (sites habituels de reproduction de P. approximatus), P. strobi ainsi que les hybrides ont produit beaucoup moins de progénitures que P. approximatus. La séparation du site de reproduction constitue une indication probante de l'existence d'isolement reproducteur entre ces espèces sympatriques.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, R. I., Pierce, H. D. Jr., Borden, J. H., and Oehlschlager, A. C.. 1980. Role of volatile and nonvolatile components of Sitka spruce bark as feeding stimulants for Pissodes strobi Peck (Coleoptera: Curculionidae). Can. J. Zool. 58: 626632.CrossRefGoogle Scholar
Anderson, J. M. and Fisher, K. C.. 1956. Repellency and host specificity in the white pine weevil. Physiol. Zool. 29: 314324.CrossRefGoogle Scholar
Anonymous. 1959. “What insect is this, anyway?U.S.D.A. Forest Service, Northeast Forest Experiment Station. Annual Report. pp. 3739.Google Scholar
Baker, W. L. 1972. Eastern forest insects. Misc. Publ. U.S. Dep. Agric. 1175. 642 pp.Google Scholar
Booth, D. C. 1978. The chemical ecology and reproductive isolation of the white pine weevil, Pissodes strobi (Peck) and the northern pine weevil, P. approximatus Hopkins (Coleoptera: Curculionidae). Ph.D. Thesis, State University of New York, College of Environmental Science and Forestry, Syracuse. 100 pp.Google Scholar
Booth, D. C., Phillips, T. W., Claesson, A., Silverstein, R. M., Lanier, G. N., and West, J. R.. 1983. Aggregation pheromone components of two species of Pissodes weevils (Coleoptera: Curculionidae): isolation, identification, and field activity. J. chem. Ecol. 9: 112.CrossRefGoogle Scholar
Bush, G. L. 1975. Modes of animal speciation. Ann. Rev. Ecol. Syst. 6: 339364.CrossRefGoogle Scholar
Finnegan, R. J. 1958. The pine weevil Pissodes approximatus Hopkins in southern Ontario. Can. Ent. 90: 340354.CrossRefGoogle Scholar
Godwin, P. A. and ODell, T. M.. 1967. Experimental hybridization of Pissodes strobi and P. approximatus (Coleoptera: Curculionidae). Ann. ent. Soc. Am. 60: 5558.CrossRefGoogle Scholar
Godwin, P. A., Valentine, H. T., and ODell, T. M.. 1982. Identification of Pissodes strobi, P. approximatus and P. nemorensis (Coleoptera: Curculionidae) using discriminant analysis. Ann. ent. Soc. Am. 75: 599604.CrossRefGoogle Scholar
Hard, J. S. 1962. Bionomic investigations of the northern pine weevil, Pissodes approximatus Hopkins (Coleoptera: Curculionidae). M.S. Thesis, New York State College of Forestry, Syracuse. 59 pp.Google Scholar
Harman, D. M. and Kranzler, G. A.. 1969. Sound production in the white-pine weevil, Pissodes strobi, and the northern pine weevil, P. approximatus. Ann. ent. Soc. Am. 62: 134136.CrossRefGoogle Scholar
Harman, D. M. and Kulman, H. M.. 1966. A technique for sexing live white-pine weevils, Pissodes strobi. Ann. ent. Soc. Am. 59: 315317.CrossRefGoogle Scholar
Harman, D. M. and Kulman, H. M.. 1967. Ovariole development in the white pine weevil, Pissodes strobi (Coleoptera: Curculionidae). Ann. ent. Soc. Am. 60: 11461150.CrossRefGoogle Scholar
Hopkins, A. D. 1911. Contributions toward a monograph of the bark-weevils of the genus Pissodes. Ent. Bull. U.S. Dep. Agric., 20 (Tech. Ser.), Part 1.Google Scholar
Lanier, G. N. 1966. Interspecific mating and cytological studies of closely related species of Ips DeGeer and Orthotomicus Ferrari (Coleoptera: Scolytidae). Can. Ent. 98: 175188.CrossRefGoogle Scholar
MacAloney, H. J. 1930. The white pine weevil (Pissodes strobi Peck) its biology and control. Bull. N.Y. St. Coll. For. 3. 87 pp.Google Scholar
Manna, G. K. and Smith, S. G.. 1959. Chromosomal ploymorphism and interrelationships among bark weevils of the genus Pissodes Germar. The Nucleus II(2): 179208.Google Scholar
Mayr, E. 1963. Animal Species and Evolution. Harvard University Press, Cambridge.CrossRefGoogle Scholar
ODell, T. M. 1972. The relationship between the fecundity of the white pine weevil, Pissodes strobi (Peck), and the relative water content of its host, Pinus strobus. Second North American Forest Biology Workshop, Oregon State Univ. 11 pp.Google Scholar
Overhulser, D. and Gara, R. T.. 1981. Occluded resin canals associated with egg cavities made by shoot infesting Pissodes. Forest Sci. 27: 297298.Google Scholar
Peckham, D. J. 1969. A serological comparison of Pissodes strobi and P. approximatus (Coleoptera:Curculionidae). Can. Ent. 101: 7890.CrossRefGoogle Scholar
Phillips, T. W. 1981. Aspects of host preference and chemically mediated aggregation in Pissodes strobi (Peck) and P. approximatus Hopkins (Coleoptera: Curculionidae). M.S. Thesis, State University of New York, College of Environmental Science and Forestry, Syracuse. 94 pp.Google Scholar
Phillips, T. W. and Lanier, G. N.. 1983. White pine weevil, Pissodes strobi (Peck), attack on various conifers in New York. Can. Ent. 115: 16371640.CrossRefGoogle Scholar
Silver, G. T. 1968. Studies on the Sitka spruce weevil, Pissodes sitchensis, in British Columbia. Can. Ent. 100: 93110.CrossRefGoogle Scholar
Smith, S. G. 1962. Cytogenetic pathways in beetle speciation. Can. Ent. 94: 941955.Google Scholar
Smith, S. G. 1970. Chromosomal polymorphism in North American Pissodes weevils: structural isomerism. Can. J. Genet. Cytol. 12: 506540.Google Scholar
Smith, S. G. and Sugden, B. A.. 1969. Host trees and breeding sites of native North American Pissodes bark weevils, with a note on synonymy. Ann. ent. Soc. Am. 62: 146148.Google Scholar
Stevenson, R. E. 1967. Notes on the biology of the Engelmann spruce weevil, Pissodes engelmanni (Coleoptera:Curculionidae) and its parasites and predators. Can. Ent. 99: 201213.Google Scholar
Stroh, R. C. and Gerhold, H. D.. 1965. Eastern white pine characteristics related to weevil feeding. Silvae Genetica 14: 160169.Google Scholar
Sullivan, C. R. 1959. The effect of light and temperature on the behaviour of adults of the white pine weevil, Pissodes strobi Peck. Can. Ent. 91: 213232.CrossRefGoogle Scholar
van Buijtenen, J. P. and Santamour, F. S.. 1972. Resin crystallization related to weevil resistance in white pine (Pinus strobus). Can. Ent. 104: 215219.CrossRefGoogle Scholar
Vandersar, T. J. D. and Borden, J. H.. 1977. Aspects of host selection behavior of Pissodes strobi (Coleoptera: Curculionidae) as revealed in laboratory feeding bioassays. Can. J. Zool. 55: 405414.Google Scholar
Vandersar, T. J. D., Borden, J. H., and McLean, J. A.. 1977. Host preference of Pissodes strobi Peck (Coleoptera:Curculionidae) reared from three native hosts. J. chem. Ecol. 3: 377389.CrossRefGoogle Scholar
White, M. J. D. 1978. Modes of Speciation. W. H. Freeman, San Francisco.Google Scholar