Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T04:25:05.250Z Has data issue: false hasContentIssue false

Apis mellifera (Hymenoptera: Apidae) drone sperm quality in relation to age, genetic line, and time of breeding

Published online by Cambridge University Press:  24 April 2015

Andrée Rousseau
Affiliation:
Université Laval, 2480 boulevard Hochelaga, Ville de Québec, Québec, Canada G1V 0A6 Centre de recherche en sciences animales de Deschambault, 120-A, chemin du Roy, Deschambault, Québec, Canada G0A 1S0
Valérie Fournier*
Affiliation:
Université Laval, 2480 boulevard Hochelaga, Ville de Québec, Québec, Canada G1V 0A6 Centre de recherche en horticulture, 2480 boulevard Hochelaga, Ville de Québec, Québec, Canada G1V 0A6
Pierre Giovenazzo
Affiliation:
Université Laval, 2480 boulevard Hochelaga, Ville de Québec, Québec, Canada G1V 0A6 Centre de recherche en sciences animales de Deschambault, 120-A, chemin du Roy, Deschambault, Québec, Canada G0A 1S0
*
1Corresponding author (e-mail: [email protected]).

Abstract

A honey bee (Apis mellifera Linnaeus; Hymenoptera: Apidae) queen’s life expectancy is strongly dependent on the number of sperm she obtains by mating with drones during nuptial flights. Unexplained replacement of queens by the colony and young queens showing sperm depletions have been reported in North America, and reduced drone fertility has been a suspected cause. The aim of this study was to evaluate drone reproductive qualities during the queen-rearing season, from May to August. Drones from two different genetic lines were reared six times during the 2012 beekeeping season at our research centre in Québec (Canada). Semen volume as well as sperm number and viability were assessed at the ages of 14, 21, and 35 days. Results showed (1) a greater proportion of older drones with semen at the tip of the genitalia after eversion; (2) an influence of rearing date on semen production; and (3) no influence of drone genetic line, age or time of breeding on sperm viability. These results highlight the necessity of better understanding drone rearing and how it can be improved to ensure optimum honey-bee queen mating.

Résumé

La durée de vie de la reine de l’abeille (Apis mellifera Linnaeus; Hymenoptera: Apidae) est dépendante du nombre de spermatozoïdes qu’elle acquiert durant les vols nuptiaux. Des remplacements de reines ainsi que de jeunes reines ayant épuisé leurs réserves de spermatozoïdes sont rapportés en Amérique du Nord et des problèmes de fertilité chez les faux-bourdons sont suspectés. Le but de cette étude était d’évaluer les qualités reproductives du faux-bourdon durant la saison de production des reines abeilles de mai à août. Des faux-bourdons de deux lignées différentes ont été élevés à six reprises au cours de la saison apicole 2012 au Centre de recherche en sciences animales de Deschambault, Québec (Canada). Le volume de sperme, le nombre de spermatozoïdes et la viabilité ont été évalués aux âges de 14, 21 et 35 jours de vie. Les résultats montrent que 1) le volume de sperme augmente avec l’âge des faux-bourdons testés; 2) le moment de l’élevage influence la production du sperme et 3) le nombre de spermatozoïdes et la viabilité des gamètes ne semblent pas influencés par la lignée génétique, l’âge ou le moment de l’élevage. Cette étude souligne la nécessité d’en connaître davantage sur l’élevage des faux-bourdons afin d’obtenir des reines abeilles adéquatement fécondées.

Type
Physiology, Biochemistry, Development and Genetics
Copyright
© Entomological Society of Canada 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject Editor: Véronique Martel

References

Andere, C.I., Monteavaro, C., Palacio, M.A., Catena, M., Rodriguez, E.M., and Collins, A.M. 2011. Apis mellifera semen: bacterial contamination and susceptibility to antibiotics. Apidologie, 42: 551559.CrossRefGoogle Scholar
Andersen, D. 2004. Improving queen bee production. A report for the Rural Industries Research and Development Corporation. Publication CSE-85A, Rural Industries Research and Development Corporation, Barton, Australia. Available from https://rirdc.infoservices.com.au/downloads/04-153 [accessed 14 February 2015].Google Scholar
Baudry, E., Solignac, M., Garnery, L., Gries, M., Cornuet, J.M., and Koeniger, N. 1998. Relatedness among honeybees (Apis mellifera) of a drone congregation. Proceedings of the Royal Society B-Biological Sciences, 265: 20092014.CrossRefGoogle Scholar
Boes, K.E. 2010. Honeybee colony drone production and maintenance in accordance with environmental factors: an interplay of queen and worker decisions. Insectes Sociaux, 57: 19.CrossRefGoogle Scholar
Camazine, S., Cakmak, I., Cramp, K., Fisher, J., Frazier, M., and Rozo, A. 1998. How healthy are commercially-produced US honey bee queens? American Bee Journal, 138: 677680.Google Scholar
Chabot, J.N. 1948. Les plantes mellifères du Québec [online]. Available from http://www.agrireseau.qc.ca/apiculture/documents/PLANTES%20MELLIF%C3%88RES%20DU%20QU%C3%89BEC%20version%202.pdf [accessed 10 May 2014].Google Scholar
Cobey, S.W. 2007. Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance. Apidologie, 38: 390410.CrossRefGoogle Scholar
Collins, A.M. 2000. Relationship between semen quality and performance of instrumentally inseminated honey bee queens. Apidologie, 31: 421429.CrossRefGoogle Scholar
Collins, A.M. 2004. Sources of variation in the viability of honey bee, Apis mellifera L., semen collected for artificial insemination. Invertebrate Reproduction and Development, 45: 231237.CrossRefGoogle Scholar
Collins, A.M. and Donoghue, A.M. 1999. Viability assessment of honey bee, Apis mellifera sperm using dual fluorescent staining. Theriogenology, 51: 15131523.CrossRefGoogle ScholarPubMed
Collins, A.M. and Pettis, J.S. 2001. Effect of Varroa infestation on semen quality. American Bee Journal, 141: 590593.Google Scholar
Di Pasquale, G., Salignon, M., Le Conte, Y., Belzunces, L.P., Decourtye, A., Kretzschmar, A., et al. 2013. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? Public Library of Science One, 8: 113. doi:10.1371/journal.pone.0072016.Google ScholarPubMed
Estoup, A., Garnery, L., Solignac, M., and Cornuet, J.M. 1995. Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics, 140: 679695.CrossRefGoogle ScholarPubMed
Gençer, H.V. and Kahya, Y. 2011. Are sperm traits of drones (Apis mellifera L.) from laying worker colonies noteworthy? Journal of Apicultural Research, 50: 130137.CrossRefGoogle Scholar
Harbo, J.R. 1985. Instrumental insemination of queen bees. American Bee Journal, 125: 282287.Google Scholar
Harbo, J.R. and Williams, J.L. 1987. Effect of above-freezing temperatures on temporary storage of honeybee spermatozoa. Journal of Apicultural Research, 26: 5355.CrossRefGoogle Scholar
Hrassnigg, N. and Crailsheim, K. 2005. Differences in drone and worker physiology in honeybees (Apis mellifera). Apidologie, 36: 255277.CrossRefGoogle Scholar
Kenward, M.G. and Roger, J.H. 1997. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53: 983997.CrossRefGoogle ScholarPubMed
Koeniger, G. 1990. The role of the mating sign in honey bees, Apis mellifera L.: does it hinder or promote multiple mating? Animal Behaviour, 39: 444449.CrossRefGoogle Scholar
Koeniger, N., Koeniger, G., and Pechhacker, H. 2005. The nearer the better? Drones (Apis mellifera) prefer nearer drone congregation areas. Insectes Sociaux, 52: 3135.CrossRefGoogle Scholar
Laidlaw, H.H. Jr. 1979. Contemporary queen rearing. Dadant Publications, Hamilton, Illinois, United States of America.Google Scholar
Laidlaw, H.H. Jr. and Page, R.E. Jr. 1984. Polyandry in honey bees (Apis mellifera L.): sperm utilization and intracolony genetic relationships. Genetics, 108: 985997.CrossRefGoogle ScholarPubMed
Lee, P.C. and Winston, M.L. 1987. Effects of reproductive timing and colony size on the survival, offspring colony size and drone production in the honey bee (Apis mellifera). Ecological Entomology, 12: 187195.CrossRefGoogle Scholar
Locke, S.J. and Peng, Y.S. 1993. The effects of drone age, semen storage and contamination on semen quality in the honey bee (Apis mellifera). Physiological Entomology, 18: 144148.CrossRefGoogle Scholar
Mackensen, O. and Tucker, K.W. 1970. Instrumental insemination of queen bees. Agriculture Handbook 390. Agricultural Research Service, United States Department of Agriculture, Washington, District of Columbia, United States of America.Google Scholar
McNally, L.C. and Schneider, S.S. 1994. Drone production and drone comb utilization in colonies of the African honey bee, Apis mellifera scutellata LePeletier, in Africa. Apidologie, 25: 547556.CrossRefGoogle Scholar
Nur, Z., Seven-Cakmak, S., Ustuner, B., Cakmak, I., Erturk, M., Abramson, C.I., et al. 2012. The use of the hypo-osmotic swelling test, water test, and supravital staining in the evaluation of drone sperm. Apidologie, 43: 3138.CrossRefGoogle Scholar
Page, R.E. and Peng, C.Y.S. 2001. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Experimental Gerontology, 36: 695711.CrossRefGoogle ScholarPubMed
Rhodes, J.W. 2008. Semen production in drone honeybees [online]. Publication No 08/130. Rural Industries Research and Development Corporation, Barton, Australia. Available from https://rirdc.infoservices.com.au/items/08-130 [accessed 13 February 2015].Google Scholar
Rhodes, J.W., Harden, S., Spooner-Hart, R., Anderson, D.L., and Wheen, G. 2010. Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie, 42: 2938.CrossRefGoogle Scholar
Rhodes, J.W., Somerville, D.C., and Harden, S. 2004. Queen honey bee introduction and early survival – effects of queen age at introduction. Apidologie, 35: 383388.CrossRefGoogle Scholar
Roberts, W.C. and Mackensen, O. 1951. Breeding improved honey bees. American Bee Journal, 91: 473475.Google Scholar
Rowland, C.M. and McLellan, A.R. 1987. Seasonal changes of drone numbers in a colony of the honeybee, Apis mellifera. Ecological Modelling, 37: 155166.CrossRefGoogle Scholar
Schlüns, H., Moritz, R.F.A., Neumann, P., Kryger, P., and Koeniger, G. 2005. Multiple nuptial flights, sperm transfer and the evolution of extreme polyandry in honeybee queens. Animal Behaviour, 70: 125131.CrossRefGoogle Scholar
Schlüns, H., Schlüns, E.A., van Praagh, J., and Moritz, R.F.A. 2003. Sperm numbers in drone honeybees (Apis mellifera) depend on body size. Apidologie, 34: 577584.CrossRefGoogle Scholar
Schmickl, T. and Crailsheim, K. 2001. Cannibalism and early capping: strategy of honeybee colonies in times of experimental pollen shortages. Journal of Comparative Physiology A, 187: 541547.Google ScholarPubMed
Seeley, T.D. 2002. The effect of drone comb on a honey bee colony’s production of honey. Apidologie, 33: 7586.CrossRefGoogle Scholar
Sokal, R.R. and Rohlf, F.J. 1995. Biometry. W. H. Freeman, New York, New York, United States of America.Google Scholar
Stürup, M., Baer-Imhoof, B., Nash, D.R., Boomsma, J.J., and Baer, B. 2013. When every sperm counts: factors affecting male fertility in the honeybee Apis mellifera. Behavioral Ecology, 24: 11921198. doi:10.1093/beheco/art049.CrossRefGoogle Scholar
Tarpy, D.R., Keller, J.J., Caren, J.R., and Delaney, D.A. 2012. Assessing the mating ‘health’ of commercial honey bee queens. Journal of Economic Entomology, 105: 2025.CrossRefGoogle ScholarPubMed
Tarpy, D.R. and Page, R.E. 2000. No behavioral control over mating frequency in queen honey bees (Apis mellifera L.): implications for the evolution of extreme polyandry. American Naturalist, 155: 820827.CrossRefGoogle ScholarPubMed
vanEngelsdorp, D., Hayes, J., Underwood, R.M., and Pettis, J.S. 2010. A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. Journal of Apicultural Research, 49: 714.CrossRefGoogle Scholar
vanEngelsdorp, D., Hayes, J., Underwood, R.M., and Pettis, J.S. 2011. A survey of managed honey bee colony losses in the USA, fall 2009 to winter 2010. Journal of Apicultural Research, 50: 110.CrossRefGoogle Scholar
vanEngelsdorp, D. and Meisner, M.D. 2010. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology, 103: S80S95.CrossRefGoogle Scholar
Woyke, J. 1962. Natural and artificial insemination of queen honeybees. Bee World, 43: 183275.CrossRefGoogle Scholar
Woyke, J. 2008. Why the eversion of the endophallus of honey bee drone stops at the partly everted stage and significance of this. Apidologie, 39: 627636.CrossRefGoogle Scholar
Woyke, J. and Jasinski, Z. 1978. Influence of age of drones on results of instrumental insemination of honeybee queens. Apidologie, 9: 203211.CrossRefGoogle Scholar
Zaitoun, S., Al-Ghzawi, A.A.M., and Kridli, R. 2009. Monthly changes in various drone characteristics of Apis mellifera ligustica and Apis mellifera syriaca. Entomological Science, 12: 208214.CrossRefGoogle Scholar