Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T06:00:11.625Z Has data issue: false hasContentIssue false

AN IMPROVED METHOD FOR REARING AXENIC MOUNTAIN PINE BEETLES, DENDROCTONUS PONDEROSAE (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

H. S. Whitney
Affiliation:
Pacific Forest Research Centre, Canadian Forestry Service, Victoria, British Columbia VSZ 1M5
O. J. Spanier
Affiliation:
Pacific Forest Research Centre, Canadian Forestry Service, Victoria, British Columbia VSZ 1M5

Abstract

Improvements in the rearing methods for axenic mountain pine beetles were made by standardizing the nutritional and physical composition of a yeast-fortified ground phloem diet. By eliminating handling and possible malnutrition of neonate larvae, and by use of individual rearing units to reduce hazards associated with microbial contamination, one person produced batches of 400–500 axenic beetles. Beetles produced by this method were morphologically and anatomically equivalent to and more fecund than field beetles, were significantly smaller than their parental stocks, and perhaps required more degree hours above 40 °C in developing from egg to adult.

Résumé

On a amélioré les méthodes d'élevage axénique du dendroctone du pin ponderosa en normalisant la composition nutritive et physique d'un régime composé de phloème moulu enrichi de levure, en éliminant la manipulation et la malnutrition. possible des larves après l'éclosion et en utilisant des cellules individuelles d'élevage pour réduire les dangers associés à la contamination microbienne. Une seule personne a pu s'occuper de faire produire des lots de 400 à 500 dendroctones axéniques. Les insectes axéniques produits par cette méthode possédaient une anatomie et une morphologie équivalent aux souches aborigènes et étaient peutêtre plus féconds. Ils étaient significativement plus petits que leurs parents, et leur développement à partir de l'oeuf jusqu'à l'adulte a demandé peut-être davantage de degrés-heures supérieurs à 40 °C.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bedard, W. D. 1966. A ground phloem medium for rearing immature bark beetles (Scolytidae). Ann. ent. Soc. Am. 59: 931938.CrossRefGoogle Scholar
Bridges, J. R. 1979. An artificial diet for rearing the southern pine beetle, Dendroctonus frontalis Zimm. (Coleoptera: Scolytidae). J. Ga. ent. Soc. 14(3): 278.Google Scholar
Browne, L. E. 1972. An emergence cage and refrigerated collector for wood-boring insects and their associates. J. econ. Ent. 65(5): 14991501.CrossRefGoogle Scholar
Greenberg, B. 1970. Sterilizing procedures and agents, antibiotics and inhibitors in mass rearing of insects. Bull. ent. Soc. Am. 16: 3136.Google Scholar
Houk, E. J. and Griffiths, G. W.. 1980. Intracellular symbiotes of the homoptera. A. Rev. Ent. 25: 161187.CrossRefGoogle Scholar
Jones, R. G. and Brindley, W. G.. 1970. Tests of 8 rearing media for the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae), from lodgepole pine. Ann. ent. Soc. Am. 63(1): 313316.CrossRefGoogle Scholar
Lanier, G. N. and Wood, D. L.. 1968. Controlled mating, karyology, morphology and sex-ratio in the Dendroctonus ponderosae complex. Ann. ent. Soc. Am. 61(2): 517526.CrossRefGoogle Scholar
McLaughlin, R. E. 1966. Laboratory techniques for rearing disease free insect colonies: elimination of Mattesia grandis (McLaughlin), and Nosema spp. from colonies of boll weevils. J. econ. Ent. 59: 401404.CrossRefGoogle Scholar
Poinar, G. O. Jr. and Thomas, G. M.. 1978. Diagnostic manual for the identification of insect pathogens. Plenum Press, N.Y.218 pp.CrossRefGoogle Scholar
Powell, J. M. 1967. A study of habitat temperatures of the bark beetle Dendroctonus ponderosae Hopkins in lodgepole pine. Agric. Meteorol. 4: 189201.CrossRefGoogle Scholar
Reid, R. W. 1958. The behaviour of the mountain pine beetle, D. monticolae during mating, egg laying and gallery construction. Can. Ent. 90: 505509.CrossRefGoogle Scholar
Reid, R. W. and Gates, H.. 1970. Effects of temperature and resin on hatch of eggs of the mountain pine beetle (Dendroctonus ponderosae). Can. Ent. 102: 617622.CrossRefGoogle Scholar
Rodriguez, J. G. 1966. Axenic arthropoda: current status of research and future possibilities. N.Y. Acad. Sci. Annals 139: 5364.CrossRefGoogle ScholarPubMed
Safranyik, L. and Jahren, R.. 1970. Host characteristics, brood density and size of mountain pine beetle emerging from lodgepole pine. Can. Dep. Fish. For., Bi-mon. Res. Notes 26: 3536.Google Scholar
Singh, P. 1974. Artificial Diets for Insects, Mites and Spiders. IFI/Plenum, N.Y. XI + 594 pp.Google Scholar
Wostmann, B. S. 1972. The gnotobiotic approach to nutrition: experience with germ-free rodents. pp. 4151in Rodriguez, J. G. (Ed.), Insect and Mite Nutrition. North-Holland, Amsterdam.Google Scholar
Vanderzant, E. S. 1974. Development, significance, and application of artificial diets for insects. A. Rev. Ent. 19: 139160.CrossRefGoogle Scholar